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Abstract. Only a few studies discuss the applications of industry 4.0 in the context of 

end-of-life aircraft treatment. This paper aims to discuss the implications of these tech-

nologies in end-of-life aircraft processes. The selected technologies including block-

chain, the internet of things, digital twins, big data, artificial intelligence, aug-

mented/virtual reality, collaborative robots are discussed. In addition, the criteria to 

evaluate the different technologies and a conceptual model for selecting the core tech-

nologies will be presented. 
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1 Introduction 

The aerospace industry is more and more challenged by the growing disposal of end-of-life 

(EoL) aircraft [54]. Indeed, more than 15,000 aircraft are projected to reach the end of their 

life in two decades [2]. Despite the growth of EoL aircraft, the status quo remains the disposal 

in deserts [10, 41]. There are several alternatives to EoL aircraft treatment and thus several 

initiatives are taking place. AFRA (Aircraft Fleet Recycling Association) focuses on decom-

missioning aircraft in the most sustainable way [1]. The European Commission introduced 

the PAMELA project which stands for the Process for Advanced Management of EoL aircraft 

and aims to dispose of aircraft in the most sustainable and safe way possible [12]. The per-

formance of EoL management can be increased with the help of industry 4.0 and its tool. 

Industry 4.0 in the EoL context is a new field of study that started in the mid-2010s [8].  Only 

a limited amount of literature addresses EoL products and industry 4.0 implications [38]. 

This paper aims to address the applications of industry 4.0 technologies in the EoL aircraft 

context and introduce a conceptual framework for evaluating the relationship and perfor-

mance of the core technologies. This study's contributions are as follows: 

• Identifying the implications of Industry 4.0 in EoL aircraft context considering the opera-

tional context 

• Developing a multi-criteria decision framework for identifying the key criteria for evalu-

ating the industry 4.0 technologies  
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The rest of the paper is organized as follows; the literature on EoL aircraft treatment pro-

cesses and subprocess is discussed. After that, a brief literature review is provided on industry 

4.0 technologies that are used or can be used in the EoL context. Then, a synthesis is provided 

for classifying the relation between aircraft processes and industry 4.0 technologies and a 

preliminary conceptual model to choose the core technologies is presented. Finally, the con-

clusion is presented with some remarks and the future research direction. 

2 End-of-Life aircraft 

2.1 Aircraft decommissioning processes.  

There is no specific standard for an efficient decommissioning process of EoL aircraft [27]. 

Authors discuss four steps for the EoL aircraft treatments: decontamination, disassembly, 

dismantling and material recovery or landfill.  IATA presented the “Best Industry Practices 

for Aircraft Decommissioning” (BIPAD) [17]. First, the aircraft go through decontamination 

of hazardous material (HAZMAT) and other non-desirable substances. After, in the disas-

sembling step, valuable components such as the engine, avionics, and landing gears will be 

extracted (figure 1). To reuse those valuable components, it is necessary to recertify them 

and keep their airworthiness status through reverse logistics (RL) phases. After the disassem-

bling, the dismantling step is processed for recycling needs. The final phase is to sort the 

components and material left into two categories, the recyclable, and the non-recyclable 

which will go to the scrap and landfilled. The aircraft is a complex product that can attain 2.3 

million components as the Boeing 787 [52]. As a result, the challenging tasks of disassembly 

and dismantling require smart sorting and advanced technologies to prioritize the disassem-

bly and dismantling process.  

Figure 1- EoL aircraft decommissioning processes (Based on information in [17]) 

APU: Auxiliary Power Unit; FCS: Flight Control System ECS & TR: Engine Control System & Thrust Re-

verser; EnCS: Envionmental Control System; HS: Hydraulic Systems; Landing gear; SE: Safety Equipment; 

W&B: Wheels and Brakes; P/E Motors: Pump and Electric Motors 
000000000000000000000000000000000000000000000000000000000000000000000000000 
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2.2 Proposed approaches for addressing EoL aircraft problem 

Several models and guidelines have been proposed for the management of EoL aircraft. Some 

of the literature attempts to tackle the problem at its source and focuses on the very first stage 

of product development: the design phase. In this phase, there is a lack of thinking about the 

end of the product's life [43]. Sabaghi and al. used multicriteria decision-making (MCDM) 

to assess the EoL aircraft disassembly process [43]. They suggest a difficulty disassembly 

indicator to measure the level of complexity of disassembly tasks. Five parameters have been 

chosen through literature and experts’ opinions and they combined the DOE-TOPSIS method 

to run this MCDM problem. The first parameter is the accessibility of the parts that need to 

be disassembled. The second is the ‘mating face’ complexity of two components merged or 

more. The third is the ‘tools’ used to disassemble, and the fourth parameter is the ‘connection 

type’ that influenced the complexity of the disassembly. The final parameter is the ‘quantity 

and variety of connections. Ribeiro et al. [41], introduced a framework in the preliminary 

design for the treatment of EoL aircraft and addresses economic and environmental factors. 

The framework aims to integrate the 3R approach (reuse, recycle and remanufacture) at the 

design phase. They focused on the EoL phase during the conceptual design phase, as this is 

an important stage for the designer, who needs feedback from EoL phase. The framework 

uses requirements and aircraft information such as the sizing of components and detailed 

design to develop the EoL part. Then, an estimation of performance parameters is analyzed, 

and a Life Cycle Assessment (LCA) is completed with simulation to find the optimum final 

aircraft design. Eco-design thinking can be used to optimize the EoL process by reducing the 

environmental impact in a cost-effective manner [27]. Eco-design used with LCA can design 

a better product by considering environmental impacts during the life cycle (LC) with less 

cost and low social impacts [45]. 

 

Other studies have proposed application of the LCA approach to evaluate the impact of 

decommissioning, dismantling, or disassembling an EoL aircraft to optimize its sequences 

with the triple bottom line objectives (economic, environmental, and social) [15, 40-41,47, 

56]. Howes et al. [15] also used LCA assessment to determine the consequences of decom-

missioning on the environment. Domingues and al. [11] used the LCA in decision-making 

by combining it with MCDM methods to analyze the environmental impacts of different ve-

hicles. LCA evaluates the environmental impacts of vehicles’ alternatives and the MCDM 

methods classified the alternatives based on the different indicators: ‘abiotic depletion, acid-

ification, eutrophication, fuel consumption, global warming, photochemical oxidation, NOx, 

CO, particulate matter, and ozone layer depletion’ [11]. Zahedi et al. [53] proposed a model 

to evaluate and optimize disassembly for EoL aircraft processing and to minimize the envi-

ronmental impact. They developed the 'disassembly difficulty indicator’ that measures the 

complexity of a disassembly sequence in a semi-destructive EoL aircraft context. This model 

also guides designers in making future-generation planes with more EoL-oriented incentives. 

Application of Industry 4.0 technology in the LC of complex products is a fresh research 

theme. More empirical studies are required to assess the challenges and discuss the applica-

tion perspectives. In this research, EoL aircraft treatment will be considered for examining 

and evaluating the impact of advanced technologies for improving the complex product re-

covery network.  
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3 End-of-life 4.0 

3.1 Industry 4.0 and EoL aircraft treatment 

The 4th industrial revolution, known as Industry 4.0, gave access to several disruptive tech-

nologies that can improve the management of EoL products [19]. Its technologies help pre-

serve the value of a product. Several of those technologies can be used to preserve the value 

of a product through its life cycle and supply chain, such as blockchain, Internet of Things 

(IoT) and Big Data. [22]. The EoL treatment in the context of industry 4.0 can be referred to 

as ‘EoL 4.0’. As opposed to manufacturing inputs, recycled inputs can be damaged by use, 

bent, twisted, deformed, or even fatigued [38]. Advanced technologies help predict the re-

maining useful life (RUL) and fatigue [51], track and exchange data in real-time [38] that 

can reinforce partnerships with the different stakeholders involved in the reverse supply chain 

and increase the quality of resources. Furthermore, the EoL 4.0 context is interesting in west-

ern countries because it diminishes labor shortage [38, 50]. The following subsections discuss 

the application technologies under the umbrella of Industry 4.0 in EoL product treatment. 

Application of Blockchain and Internet of Things.  

 

Blockchain could address a certain challenge regarding EoL aircraft. Keivanpour [20] pro-

posed to use blockchain for the EoL aircraft recovery part market for its traceability features 

and smart contract possibilities. Blockchain can also provide better data security, better visi-

bility in the supply chain through traceability and improved information sharing. This tech-

nology can also be used for its safety guarantees and auditable easy outcomes [48]. Aleshi 

and al. [3] used blockchain technology to propose a Secure Aircraft Maintenance Record 

(SAMR) to address the need to provide greater integrity and transparency of aircraft mainte-

nance records. The radio-frequency identification (RFID) system combined with blockchain 

technology contributes to the complex credentials and documents that need to be collected 

for the certification of an aircraft. It will improve the efficiency of the process and the relia-

bility of these documents all along the supply chain [44]. 

 

The IoT can also be applied in the supply chain to enable traceability features. Mainte-

nance traceability is critical in the aerospace sector as more than 20,000 aircraft components 

will be replaced throughout their LC [48]. The authors highlighted the lack of standardized 

records and traceability for the aircraft use of materials, maintenance. In response to this, [44] 

proposed to combine the RFID tag system with IoT technology in Airbus’ supply chain. This 

could be achieved through blockchain processes that simplify information access and in-

crease data security. However, the combination of IoT and RFID has some limitations, such 

as energy consumption, data synchronization, intercommunication difficulties and safety 

[19]. Wang and Li designed a model that uses blockchain and IoT to create a framework for 

monitoring the supply chain to ensure that airworthiness traceability is met for the entire LC 

of an aircraft [48].  

Application of Digital Twin 
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Digital twin (DT) technology provides a digital copy of a physical object with real-time data 

transfer information. It can help to simulate and optimize dismantling or disassembling pro-

cesses with better efficiency through data optimization [19]. It was initially introduced by 

NASA and shifted from spatial simulation to aircraft [31,49]. DT application in the EoL stage 

is the least studied topic in the life cycle of a product with only 4.9% [25]. This technology 

can fulfil different roles: it can diagnose a problem or predict a scenario in a disassembly 

process of a component via simulation [25]. These different roles can be addressed by provid-

ing real-time data in a decentralized manner. Indeed, DT integrates the proper information at 

the correct time in the product's life cycle. This leads to the enhancement of material flow 

and helps to adopt the circular economy by allowing transparency and improved collabora-

tion between the different stakeholders. With the availability of information in real time, the 

different actors can anticipate and foresee possible problems and act accordingly in the value 

chain. Hence, collaboration is simplified in this way [36]. Moreover, digital technologies help 

the transition to the circular economy model by making data accessible through transparency. 

This enables reverse material flows [34] and can be called a ‘digital reverse logistic twin’ 

[46]. DT enables reverse flow by using artificial intelligence to predict the data behavior of 

the physical and digital world combined with the use of a mathematical model to simulate 

the critical parameters for a quantitative decision model [18, 46]. The digital mirror model 

enables simulation with high reliability. Wang and Wang [49] proposed using DT in recov-

ery, recycling, and remanufacturing processes for waste from electric and electronic equip-

ment (WEEE). They presented the WEEE cyber-physical system based on DT technology 

and through product life cycle. This system is based on a cloud system and includes: 

─ Design phase: an LCA is made to assess environmental impact and simulation for design 

for recycling, disassembly, remanufacturing, and archiving when needed. 

─ Manufacturing and remanufacturing phases: CAx model  

─ Consumer: attached tag of tracking/identification technology (e.g., RFID, QR code) so 

they can update information for repair, replacement, or upgrade through an application. 

These technologies are static and are linked to a DT that becomes unique at this phase. 

This DT supports different recycling, and remanufacturing EoL activities. It is personal-

ized and procures a competitive advantage by its adaptability to scenarios, simulations, 

and clients’ requirements. 

─ EoL collecting and recycling: collecting is generated with a computer-aided logistic sys-

tem (CALS) and is driven based on the most recent system status. 

─ Remanufacturing phase: DT is based on the product history data, and a plan is made for 

optimized recycling processes.  

DT technology can be integrated with other industry 4.0 technologies such as RFID, arti-

ficial intelligence, or different cyber-physical systems. International standards are designed 

to support interoperability in these diverse systems [49]. 

Application of Big data and Artificial Intelligence 

 

Data plays an essential role in the aviation industry. To optimize EoL processes, a significant 

volume of data is required throughout the life cycle of an aircraft. Specifically, data mining 

can provide a better understanding and decision-making in the different stages during the 
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treatment of an EoL aircraft [19]. Big data analysis (BDA) enables ‘smart decision-making’ 

as the data permit to predict maintenance and other product behavior [57].  A big set of data 

permits the use of algorithms. Mascle and Balasoiu [28] use the wave propagation algorithm 

to propose an optimal disassembly analysis and sequence execution.  Ding and al. have used 

data technology for the remanufacturing of EoL goods. Indeed, they used this technology to 

predict and optimize the cost for the remanufacturing step and to propose a cost model [9].  

[55] created an architecture with BDA for cleaner maintenance of complex products. 

 

Artificial intelligence (AI) and machine learning (ML) are broadly utilized for the remain-

ing useful life (RUL) [51] and in the RL for disassembly, remanufacturing, and recycling 

[22]. Amin and Kumar [4] used AI to propose a model for forecasting the residual operating 

life of a turbofan aircraft engine. They used NASA’s commercial-Modular Aero-Propulsion 

System data sets. First, they used sensors to measure different raw data such as temperature, 

pressure, speeds, fuel flow and coolant bleed. After, the authors used the min-max normali-

zation method within the [-1,1] range and used a two-dimension matrix with sensor data and 

time sequences. These data were used with the deep learning method of Convolutional Neural 

Network that flattered outputs for the next step. In the next step, the long-short-term memory 

layer or the recurrent neural network layers were used and compared for the remaining useful 

life prediction with a single neuron attached at the end to provide the result. After this step, 

a performance evaluation is made with a root mean squared error and simulations are per-

formed [4]. AI allows for the introduction of more intelligent technologies such as augmented 

and virtual reality (AR / VR), as discussed further below, through its human-like intelligence 

and discernment. ML can be used in the disassembly process. Grochowski and Tang [13] 

aimed to apply ML to be cost-efficient through the disassembly processes. There are two 

principal challenges for the disassembly sequence: first, the modulization of the disassembly 

process can be complex because it is necessary to know what activity needed to be performed 

at any moment during the disassembly. For this matter, the authors proposed to use the dis-

assembly Petri net (DPN) that represents a non-deterministic decision-making model during 

disassembly. However, DPN cannot be used alone because it doesn’t acknowledge which 

actions are the most appropriate to take. To respond to this challenge, the hybrid Bayesian 

network (HBN) is combined with DPN. It determines the uncertain parameters that charac-

terize the disassembly process through an acyclic graph that represents quantitative and qual-

itative information related to the disassembly. They applied it for a computer disassembly to 

optimize the sequence [13]. Yan and al. [51] combined DL technology and device electro-

cardiogram (DECG) for RUL estimation and maintenance. On one hand, DECG permits in-

dustrial application maintenance to monitor the product cycle and provides predictive data in 

the product lines improving operator efficiency and non-planned downtime [51]. On the other 

hand, DL technology has the benefit of extracting features automatically which simplifies 

prediction for RUL. 

Application of Virtual Reality and Artificial Reality.  

 

Virtual reality (VR) and augmented reality (AR) are two technologies of industry 4.0. VR 

enables the ‘virtual disassembly’ and ‘virtual maintenance’ possibilities with simulations and 

optimization of the physical processes [37]. Qiu and al. [37] proposed an interactive model 

based on VR that analyses constraints, interaction, and methods of operator assembly and 
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disassembly through ‘virtual human’ (VH). AR can be defined as the overlaying of virtual 

signs, icons, or imagery on physical reality [6]. Introduced by Ronald Azuma [5], it can ben-

efit the aviation industry. Ceruti and al. [6] investigated the use of AR and additive manufac-

turing for the maintenance process. They proposed to use AR to better assist operators in a 

maintenance process to achieve better efficiency and reduce the possibility of errors. Mo and 

al. [29] present virtual disassembly through the virtual environment Motive3D. They pro-

posed virtual disassembly analyzer (VDA). VDA uses CAD models’ inputs, then proceed to 

generate a disassembly sequence and assess it with the data deployment tool (DDT). To-

gether, DDT and VDA constitute the server Motive3D that enables the visualization of the 

disassembly process in 3D. Motive3D shows gesture of operators with special data gloves 

that shows rotation, movement, translation, grasp, release, mouse movement or selection. 

Application of Collaborative robots.  

 

Collaborative robots (CR) or collaborative human-robot (H-R) are programmed to assess, 

plan, and perform tasks while considering human constraints and the limitations of the envi-

ronment [21]. Manual disassembly is not optimal from an economic point of view. On the 

other hand, the use of regular robots is not reliable enough for complex products [35] such 

as EoL aircraft parts. Parsa and Saadat [35] recommended that the CR can assess the sequence 

to be disassembled based on remanufacturing potential. The operator will be helpful in diffi-

cult tasks considering the required flexibility. Hjorth and al. [14] conduct a literature review 

on CR for the non-destructive disassembly process of EoL objects. They’ve highlighted some 

gaps in the field as the strategies put in place with H-R collaboration are mainly the avoidance 

of contact with the operator or the lack of a combination of the verbal and the non-verbal 

communication method between the worker and the CR. Ottogalli and al. assessed with VR 

technology the CR in the assembly line of an aircraft because most of the task is executed 

manually [33]. They developed a framework to assess the process of semi-automation tasks, 

the return on investment and the ergonomics of the workers. Liu and al. [24] proposed to use 

of an algorithm to optimize the robotic disassembly sequence with a collaborative H-R in the 

remanufacturing process. 

3.2 Summary of Industry 4.0 technologies in EoL aircraft Problem 

Table 1 presents 7 technologies of industry 4.0 and their implications in EoL aircraft, how 

those technologies can be used, the related literature and the industry 5.0 perspectives. In-

dustry 5.0 is a new movement that introduces the efficiency and precision of industry 4.0 

technologies while integrating the subjectivity and intelligence of humans [23]. Leng and al. 

[23] discussed that industry 5.0 is driven by three key characteristics: ‘Human centricity’, 

sustainability, and resiliency. ‘Human centricity’ is the principle that humans bring higher 

levels of tolerance to the systems. 

Technolo-

gies 

Advantages Processes 

intervention 

How it is used Liter-

ature 

Industry 5.0 application 

Blockchain Traceability 

Visibility 

Security 

Information 

Maintenance  

Recovery  

Remanufacture 

Recycling 

Re-using 

a. Tracking of aircraft parts 

b. Maintenance records of air-

craft available in real-time 

c. Smart contract possibilities 

[3] 

[20] 

[44] 

[48] 

 

Sustainability: clients expect the supplier to 

deliver sustainability-related information on 

products. The utilization of blockchain tech-

nology as a solution for the absence of trace-

ability in the supply chain. [23] 

Table 1 - Industry 4.0 technologies and EoL aircraft process 
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Sharing/ac-

cessibility 

d. Data sharing and monitoring 

for airworthiness status  

e. Secure the data 

Resilience: product life cycle data [23] 

IoT Traceability 

Accessibility 

Prediction of 

comportments 

Maintenance 

Standardized 

records 

Sales, and stor-

age 

a. Maintenance records of air-

craft available in real-time 

b. Standardization of mainte-

nance record 

c. Monitoring for airworthi-

ness status 

[19] 

[23] 

[44] 

[48] 

 

Resilience: internet of everything (IoE) of-

fers new capabilities such as: (a) allowing 

predictive maintenance operations performed 

to avoid issues instead of planning once a de-

fect occurs. (b) Combining IoT sensors with 

DT technology to collect real-world data [26] 

Digital 

Twins 

Simulation/ 

optimization 

process 

Accessibility 

Decentralized  

Transparency 

Simulation  

Recycle  

Recovery 

Remanufacture 

a. Real-time simulation for op-

timization of dismantling or dis-

assembling process for an air-

craft 

b. Diagnostic operational prob-

lem 

c. Can predict scenario 

[19] 

[25] 

[31] 

[36] 

[49] 

Human centricity and resilience:  

Society 5.0: merging physical environment 

with cyberspace. 

Metaverse: immersion for H-R/CR [23] 

Big Data Simulation/ 

optimization 

process 

Prediction of 

comportment 

Reliability/ 

Accuracy 

Predictive 

maintenance, 

Recycling 

Re-using 

Disassembly 

Remanufacture 

a. Predict maintenance. 

b. Predict comportments and 

tendency 

c. Predict and optimizes for re-

manufacturing. 

d. Green maintenance 

[9] 

[19] 

[28] 

[55] 

[57] 

 

Society 5.0: Data-driven society 

Resilience characteristic: mass-personaliza-

tion [23] 

BD: Faster decision-making [26] 

AI Simulation/ 

optimization 

process 

Prediction of 

comportment 

Disassembly 

Remanufacture 

Recycling 

Predict residual life of an aircraft 

parts 

[4] 

[22] 

 

Resilience:  

‘Better task allocation’ [23] 

‘Better handling of reitative jobs’ [23] 

Manufacturing activities’ hyper customiza-

tion [26] 

AR / VR Reliability 

Error Minimi-

zation 

Ergonomy 

Maintenance 

Simulation 

Disassembly 

Remanufacture 

a. More efficient process for 

disassembly of parts 

b. Maintenance process opti-

mization 

[5]  

[6] 

[37] 

 

Resilience: extended reality (combination of 

VR/AR): is used for remote assistance, as-

sembly line monitoring, training, and mainte-

nance [26] 

Collabora-

tive 

robot 

Optimization 

process 

Productivity 

Cost preven-

tion 

Ergonomy 

Disassembly 

Remanufacture 

Disassembly of semi-automa-

tion process for safety purposes, 

to be more cost-effective, and 

productive. 

[14] 

[21] 

[24] 

[33] 

[35] 

 

‘Human centricity’ and resilience:  

Operator 5.0 / Cobots (collaborative robots): 

system/self-resiliency, enhancing flexibility 

and dexterity, analyzing and optimize human 

work [23,26]. 

 

3.3 Evaluation of technologies.  

Blockchain permits traceability, reliability, and security but can be complex in the adoption 

process. IoT also allows for visibility and traceability, although its energy consumption might 

be a challenge. DT can be combined with AI or used alone to simulate scenarios and opti-

mizes them by mimicking the physical world into a digital world with real-time scenarios. 

AR/VR helps analyze ergonomically and minimizes errors in certain processes such as dis-

assembly or remanufacturing. CR can optimize operations and add values, but it can be a 

challenge to integrate into a disassembly chain and to be trustable by operators. Addressing 

the challenges and opportunities of these technologies in EoL aircraft problem to maximize 

its value and minimize the negative impact on sustainability is a complex task. To determine 

which of the technologies of Industry 4.0 will be valuable in the EoL sustainable decommis-

sioning of an aircraft, multi-objective decision-making (MCMD) approach can be applied. 

One of the most applied MCDM methodologies is the analytics hierarchical process (AHP) 

which was first introduced by Saaty [42]. This method provides a classification of different 

alternatives considering qualitative and quantitative information and evaluates the con-

sistency of the results and criteria. The gap in this method is the lack of consideration of the 
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relation between criteria, so Saaty proposed a variation: the analytic network process (ANP) 

method. The ANP provides a network structure to analyses the alternatives [30]. This method 

has been used to assess industry 4.0 technologies. Chang, Chang, and Lu [7] used the MCDM 

approach of ANP and the technology-organization-environment framework (TOE) to assess 

in small and medium enterprises the utilization of technology 4.0. Ravi and al. combined 

ANP and the balanced scorecard approach (BS) to classify EoL computers into the reverse 

logistic context [39]. Ordooadi proposed to consider quality, flexibility, cost, and impact on 

human resource when considering the adoption of technologies [32]. As already discussed, 

the importance of traceability features and maintenance reports and requirements is critical 

in the aerospace industry. Real-time data exchange, security, reliability, certification infor-

mation, substitutability, energy consumption, environmental impact, social impact, and eco-

nomic impact, are key criteria to consider when evaluating and classifying the technology 

alternative in an EoL context. Those airworthiness information needs to be considered when 

evaluating technologies from industry 4.0.   

 

 As shown in Figure 2, this paper presents ANP framework of criteria to evaluate the best 

options among industry 4.0 technology for EoL aircraft treatment. Four categories of criteria 

have been considered in the model through the literature: economic, environmental, and so-

cial, for the triple bottom line and the technological performance (level 1). Sub criteria related 

to the aerospace industry are considered in the level 2. In level 3 the preliminary indicators 

are presented and will be used when evaluating the different alternatives (level 4). 

Conclusion  

Valorization of EoL aircraft is an important research field considering the 20 000 aircrafts 

that will be decommissioned in the next 20 years. The aerospace industry focuses on maxim-

izing the value of those EoL airplanes that are often just parked in desert. For successful 

operation of reused and remanufactured parts, the reliability of the components, ease of dis-

assembling, inspection, cleaning, and maintenance data should be considered. Industry 4.0 

tools provide several opportunities with analyzing real-time data and facilitate the decision-

making process The blockchain technology, the Internet of Things, digital twins, big data, 

artificial intelligence, augmented reality/virtual reality, and collaborative robots are dis-

cussed. An MCDM based framework is proposed to assess and classify those technologies 

with the analytical network process.  As the future research, secondary data from EoL aircraft 

treatment of a pilot project will be used to assess the impacts of Industry 4.0 in the different 

sub-processes of EoL aircraft treatment based on waste hierarchy approach. Moreover, the 

preliminary ANP model in this paper will be completed, readiness of the alternatives will be 

added as a key factor and applied in a real case study. 
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Figure 2 - ANP model for the technology of industry 4.0 to decommission an aircraft 
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