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Abstract. This paper presents a framework for solving assembly line design 

problems by considering ergonomics aspects. Although ergonomics factors have 

been ignored in conventional optimization problems in this area, in the long term, 

ergonomics risks and work-related injuries can impose considerable expenses on 

production systems. Moreover, in the design stage, different types of uncertainty 

in operational and ergonomics aspects can affect the optimization model. There-

fore, the optimization framework in this study includes the results of ergonomics 

assessment tools and employs fuzzy logic to tackle imprecise factors. In the con-

text of our problem, the sources of imprecision are twofold: environmental un-

certainty and system uncertainty. Environmental uncertainty is related to demand 

uncertainty derived from market variations and customers’ behavior. System un-

certainty includes the uncertainties within the production process that partially 

relate to human aspects, such as uncertainty in task execution time and the phys-

ical capacity of the operators. 
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1 Introduction 

The main goal of planning assembly lines (ALs) is to increase productivity and effi-

ciency. This is achieved through optimization problems called assembly line balancing 

problems (ALBP) [1]. However, market fluctuations and changing customer needs in-

troduce uncertainty and require flexible production systems. Manual tasks in ALs con-

tribute to system flexibility but also pose risks to operators' ergonomics and line effi-

ciency. Therefore, Ergo-ALBP considers both operational and ergonomics factors in 

optimizing the AL system. Manual tasks also introduce variability due to workers' phys-

ical characteristics, gender, age, experience, and skills, impacting the optimization 

model [2-4]. 

There are two critical research gaps in Ergo-ALBP literature. Firstly, traditional op-

timization models have overlooked human factors and ergonomics (HFE) in favor of 

operational factors like cost and time. Additionally, most studies have considered ergo-

nomics aspects in existing ALs rather than in the design stage. However, considering 

ergonomics parameters in the design stage (Ergo-ALDP) is strategic planning that can 

prevent future costs for redesigning and taking corrective actions to solve ergonomics 
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problems [5]. Secondly, vague and imprecise factors, such as market uncertainty and 

varying worker characteristics, need to be included in the optimization problem. This 

includes accounting for variable takt time, inconsistent ergonomics risk levels, and task 

times that depend on individual workers. Notably, no previous Ergo-ALBP studies have 

addressed both uncertain conditions and HFE aspects during the design phase of ALs. 

This study contributes by proposing a framework to optimize Ergo-ALDPs in uncer-

tain conditions. Fuzzy logic is used to handle imprecise parameters and variables. The 

framework is applicable to any type of AL in the design step and beneficial for engi-

neers and ergonomics practitioners in production systems. 

This manuscript is organized as follows: In Section 2, a brief introduction to Ergo-

ALBP is provided. Section 3 and Section 4 present the optimization model and solution 

approach, respectively. In Section 5, the practical perspective of the proposed frame-

work is discussed. Finally, Section 6 presents the concluding remarks. 

2 Background 

In the early 1900s, Ford’s car manufacturing plants were a good example of assembly 

lines used in the context of mass production. Since then, this crucial element of mass 

and lean production systems has significantly evolved and transformed into a more ag-

ile system. Assembly lines are the final stage of most production systems and are the 

closest part to customers. Thus, optimizing them involves balancing them and elimi-

nating any issues that prevent them from working smoothly. In the following subsec-

tions, the main aspects of these optimization problems are explained. 

2.1 Assembly Line Balancing Problem (ALBP) 

Optimization models ALs aim to eliminate unbalanced points, such as bottlenecks, that 

decrease efficiency and worsen Key Performance Indicators (KPIs). Balancing ALs in-

volves optimizing them with respect to productivity and efficiency goals [1]. The for-

mulation of ALBPs as linear programming (LP) models dates back to 1955 [6]. While 

a solution approach was introduced in 1961 [7], trial-and-error techniques have been 

the primary solving method for several decades. ALBPs are NP-hard combinatorial op-

timization problems (COPs) that require finding an optimal solution from a finite set of 

feasible solutions (FSs). ALBPs are categorized into simple (SALBP) and general 

(GALBP) problems [8]. SALBPs consider one-sided straight ALs with deterministic 

operation times, optimizing one or two objectives. They are classified into four types: 

Type 1 minimizes the number of workstations based on a given cycle time, Type 2 

minimizes the cycle time based on a fixed number of workstations, Type F checks the 

feasibility of the problem with a fixed number of workstations and cycle time, and Type 

E minimizes both the cycle time and the number of workstations. GALBPs encompass 

more complex conditions, such as multiple product types, multiple sides, or non-

straight assembly lines. 

While SALBPs have been extensively studied, there is a need for more research on 

GALBPs to tackle sophisticated real-world problems [9]. The past decade has seen a 

positive trend towards considering these general problems to address complexity. 
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2.2 Assembly Line Balancing Problem with Ergonomics Aspect (Ergo-ALBP) 

Assembly tasks pose ergonomics risks and work-related musculoskeletal disorders 

(WMSDs) due to their repetitive and prolonged nature. Considering ergonomics and 

operational factors together is crucial for preventing injuries, and Gunther et al. were 

the first to consider ergonomics risks in the ALBPs in 1983 [10]. Since then, there have 

been few contributions in this domain until 2011 when Otto and Scholl included an 

ergonomics objective in the optimization model [11]. Their study motivated other 

scholars to focus on Ergo-ALBPs. 

Although many research studies have examined the balancing of different types of 

ALs, limited research has been conducted in Ergo-ALBPs. It is proved that neglecting 

ergonomics factors in the design stage can lead to health-related issues for workers in 

the long run, which may require corrective measures that cost 9.2 times more than pre-

ventive actions taken during the design phase [5]. However, in the case of Ergo-ALBPs, 

few studies have focused on design problems (Ergo-ALDPs). Baykasoğlu et al. [2] ad-

dressed a SALBP in the design phase and developed a heuristic solution to solve it. 

Finco et al. [12] modeled an optimization problem for designing a semi-automatic AL. 

They attempted to minimize the design cost and ergonomics risks by analyzing the vi-

bration of automatic hand-held tools. In recent years, collaborative human-robot assem-

bly line design problems (CALBPs) or (RALBPs) that integrate ergonomics aspects 

with assigning exoskeletons and robots have become more common. For instance, 

Abdous et al. [13] examined a CALDP and developed an optimization model to reduce 

the overall equipment cost (design cost of AL) and minimize the ergonomics risk level. 

Based on the definition by the International Ergonomics Association (IEA), human 

factors and ergonomics (HFE) is a scientific discipline that examines interactions be-

tween humans and system components, aiming to enhance operator safety and system 

performance. Numerous ergonomics assessment tools (EATs), such as OCRA, REBA, 

RULA, OWAS, and NIOSH's RNLE, have been developed to evaluate ergonomics risk 

factors in workspaces. Some of these methods serve as foundations for national and 

international ergonomic standards, including EN1005-2, EN1005-5, ISO11228-1, and 

ISO11228-3. While no method is universally superior [14], EATs categorize ergonom-

ics risk levels into ranges from low to high [3]. 

2.3 Uncertainties 

168: Limited research has incorporated ergonomics aspects into optimization models 

for ALBPs, particularly in the design stage (Ergo-ALDP). Most studies have focused 

on deterministic problems, overlooking the impact of uncertainty. However, in the de-

sign phase, uncertainty affects the assembly design in some way. In general, there are 

two types of uncertainty: environmental and system uncertainty [15]. In the context of 

the problem under study, environmental uncertainty includes uncertainties in demand 

variations resulting from market fluctuations. Moreover, system uncertainty is related 

to any imprecision in the manufacturing process. It partially consists of human aspects, 

such as uncertainty in system reliability, task time, and the physical capacity of the 

workers. In addition, Golabchi et al. [16] found that the inputs of EATs are often im-

precise, which could significantly impact the results. To model these uncertainties, re-

searchers employ stochastic programming models when historical data is available to 
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identify the probability distribution of imprecise factors. Otherwise, fuzzy program-

ming is helpful. 

To the best of the authors' knowledge, only Tiacci and Mimmi [17] have included 

uncertainty in their Ergo-ALBP model. They incorporated stochastic task times and 

introduced penalties for cases where ergonomics constraints and/or predicted cycle 

times were not addressed. To evaluate ergonomics parameters, they utilized OCRA, 

and for cost minimization, they employed a genetic algorithm (GA). 

2.4 Fuzzy Approaches in Balancing Problems 

Ergonomics aspects and operational parameters in optimization problems of ALs rep-

resent conflicting objectives. To overcome the vagueness in multi-objective models 

with ergonomics and operational functions, some articles such as Cheshmehgaz et al. 

[18] and Ozdemir et al. [4] employed fuzzy goal programming. Although considerable 

research studies in ALBPs have employed fuzzy set theory (FST) to address uncertain 

and imprecise conditions in ALs, only Mutlu and Özgörmüş [19] considered ergonom-

ics risks as fuzzy numbers among Ergo-ALBPs literature. They applied Bellman and 

Zadeh’s approach [20] to minimize the number of workstations and perceived work-

load. 

3 Problem Context 

As mentioned in previous sections, in the design stage of Ergo-ALBP, two types of 

uncertainty must be addressed in the optimization model. Since takt time, derived from 

the demand rate, is not deterministic in the design phase, cycle time is imprecise. Task 

execution times also vary based on the worker’s skill and experience level. Further-

more, ergonomics risk factors are vague because, in the planning step, the works situa-

tions are not precisely determined nor who will perform the task in each workstation. 

Various characteristics of workstations (e.g., the force required to use tools or lift parts 

to be assembled, types of tools used, physical dimensions of workstation components, 

repetition and frequency of sub-tasks, thermal environment) and of operators (e.g., gen-

der, age, skill level, experience, and physical and work capacity, prior training), can 

impact the ergonomics risk level of each task. Therefore, this section defines the opti-

mization problem by taking some steps and developing the model from an initial math-

ematical problem, SALBP-Type1, to the final state by identifying fuzzy time and ergo-

nomics parameters. 

3.1 Initial Model 

In the design stage, the optimum number of workstations should be identified, thus the 

mathematical problem is the same as SALBP-Type1. The notations of the initial opti-

mization model are as follows: 

Sets & Indexes: 

N Set of tasks (i,j = Indices for tasks: i,j ∈ {1, …, n}) 

S Set of workstations (s = Index for workstations: s ∈ {1, …, mmax} 

Pi Set of immediate predecessors of task i 

Parameters: 
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n = number of tasks       m = number of workstations  

ti = execution time of task     CT = cycle time 

Decision variables: 

xsi = Binary variable, if task i is assigned to station s, it will be equal to 1 otherwise 0 

ys = Binary variable, if at least one task is assigned to station s, it will be equal to 1 

otherwise 0  

Then the initial mathematical model for the proposed ALDP is the same as SALBP-

Type1: 

 Min ∑ 𝑦𝑠
𝑚𝑚𝑎𝑥
𝑠=1  (1) 

 Subject to: ∑ 𝑥𝑠𝑖 = 1𝑠∈𝑆  , ∀𝑖 ∈ 𝑁 (2) 

 ∑ 𝑠. 𝑥𝑠𝑖𝑠∈𝑆 ≤ ∑ 𝑠. 𝑥𝑠𝑗𝑠∈𝑆  , ∀ 𝑖, 𝑗 ∈ 𝑁|𝑖 ∈ 𝑃𝑗 (3) 

 ∑ 𝑥𝑠𝑖 . 𝑡𝑖 ≤ 𝐶𝑇𝑖∈𝑁  , ∀ 𝑠 ∈ 𝑆 (4) 

 ∑ 𝑥𝑠𝑖 ≤ 𝑀. 𝑦𝑠𝑖∈𝑁  , ∀ 𝑠 ∈ 𝑆 & ∑ 𝑡𝑖 < 𝑀𝑖∈𝑁  (5) 

 𝑥𝑠𝑖 , 𝑦𝑠 ∈ {0,1} , ∀ 𝑠 ∈ 𝑆; ∀ 𝑖 ∈ 𝑁 (6) 

In equation (1), the objective function minimizes the number of workstations. The con-

straint in equation (2) guarantees that every task i is assigned to a single workstation. 

Equation (3) checks that the assigned stations satisfy precedence relations between 

tasks i and j. Equation (4) ensures that the total stations’ time cannot exceed the cycle 

time. Equation (5) guarantees the utilization of a workstation when any task is assigned 

to it. The last equation indicates that decision variables xsi and ys are binary variables. 

3.2 Fuzzy Ergo-ALDP 

As mentioned before, in the design step, time-related parameters are imprecise. Cycle 

time depends on takt time (available time divided by demand) and the execution time 

of tasks. Thus, according to inconstant demand and variable task times, cycle time is 

imprecise and varies to some extent (α). As a result, fuzzy logic can help us to define 

this parameter’s variability. Fig. 1(a) illustrates the membership function of cycle time 

(CT) by considering α as an acceptable increase in CT which imposes some overtime 

in the production system, and it should be minimized. 

Based on the output of most EATs and considering the imprecise input of these tools 

which brings uncertainty to our model, fuzzy sets can define the results in the best way. 

Fig. 1(b) depicts the membership function for a typical EAT. In this function, if the 

result of EAT is between ERL and ERU, it is interpreted as a moderate risk. While the 

results lower than ERL show a low-risk level, the outputs upper than ERU entail a high 

ergonomics risk. Taking advantage of the research done by Cheshmehgaz et al. [18], 

ergonomics risks can be evaluated as accumulated factors. As a result, various EATs 

can be applied to assess desired ergonomics parameters in the final optimization model. 

Some studies employed fuzzy set theory in literature to tackle the uncertainty in as-

sessing ergonomics parameters. For instance, Ghasemi and Mahdavi [21] developed a 

new REBA scoring system based on fuzzy sets and several fuzzy membership sets. 

Furthermore, Wang et al. [22] integrated a 3D automated posture-based ergonomics 
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risk assessment with a specialized rule-based fuzzy inference algorithm to solve the 

issue derived from the imprecise nature of inputs. 

 

 
Fig. 1. The membership functions: (a) For cycle time (b) For ergonomics risk factor 

4 Proposed Optimization Framework 

In Ergo-ALBP literature, Mutlu and Özgörmüş [19] were the only ones to consider 

fuzzy ergonomics risks in their research and solve their model using the Bellman-Zadeh 

method. However, in their approach [20], the constraints and objectives are treated to-

gether, even though they convey different meanings. Therefore, the proposed solution 

procedure in this paper employs a bipolar view [23]. In this perspective, negative pref-

erences play the role of constraints and restrict the number of FSs. In contrast, positive 

preferences act as the objective function(s) and evaluate FSs to find the best one. Fig. 

2 shows the procedure of the proposed heuristic method for solving the fuzzy Ergo-

ALDP. This heuristic approach combines the COMSOAL (Computer Method of Se-

quencing Operations for Assembly Lines), Fuzzy goal programming, and a fuzzy in-

ference system. 

 
Fig. 2. Schematic of the proposed heuristic solution approach 

The first step involves identifying FSs based on time and precedence constraints, using 

the mathematical model developed in the previous section. The task assignment rules 

for this step are consistent with those proposed by Baykasoglu et al. [2], and the pseudo-

code for the first part is presented in Fig. 3. It is worth noting that FSs can be generated 

using different CTs by varying the value of α. Moreover, tasks’ execution times vary 

in a range of [ti , t’i], ti is the average time of executing the task and t’i is the maximum 

duration for doing it by the lowest skill operator. 
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Fig. 3. Pseudo code of the rule-based COMSOAL approach 

The solution method’s second part involves applying a fuzzy inference system, as il-

lustrated in Fig. 2. In this stage, ergonomics considerations are expressed as rules, and 

FSs are evaluated based on these rules, including the membership function defined in 

Section 3.2. 

5 Application Perspective 

The fuzzy optimization framework is advantageous for real-world scenarios due to its 

ability to handle complex and uncertain information that is challenging to quantify pre-

cisely. It is particularly useful in ergonomics risk prediction during the design phase, 

where data may be incomplete or uncertain. The proposed framework can incorporate 

multiple objectives and constraints, enabling a more balanced approach to decision-

making and comprehensive analysis of the optimized system. This framework is suita-

ble for various industries, including the automotive sector, which is prominent in Ergo-

ALBP literature. Incorporating realistic uncertain conditions in planning and designing 

production systems is a challenge. Thus, addressing uncertainty in optimization prob-

lems is expected to become more prevalent in the future to identify robust solutions. 

As mentioned before, the proposed optimization approach consists of two steps. In 

the first step, FSs are identified based on technical parameters and constraints, making 

it useful for different configurations of assembly lines (e.g., 2-sided, U-shape lines). 

The second step involves considering ergonomics aspects by developing fuzzy rules to 

evaluate FSs and determine the best among them. Various ergonomics fuzzy rules can 

be applied, such as the assessment methodology developed by [21], which uses fuzzy 

sets and REBA, or the fuzzy REBA and RULA risk rating proposed by [22]. 

A numerical example is provided to exhibit the relevance of the suggested mathe-

matical model and the efficiency of the proposed solution approach. The example is 

generated randomly and consists of 10 tasks with the precedence diagram that is shown 

in Fig. 4. 
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Fig. 4. Precedence diagram of the example 

By applying the proposed heuristic algorithm, four FSs are found with the minimum 

number of workstations which is four stations. For each workstation, ergonomics risk 

factors are assessed by the model developed in the Gallagher and Heberger study [24]. 

They evaluated MSD risk factors by examining the interaction of force and repetition 

of tasks. Table 1 indicates the results of their model in the form of fuzzy rules. By 

applying four fuzzy rules, the ergonomics risk level of each workstation is calculated 

as shown in Fig. 5. In the next step, the FSs should be evaluated to find the best solution. 

For this final step, we can consider the following three approaches to detect the opti-

mum solution: 

1) Highly Conservative Approach: No red area task assignment is permitted. 

2) Conservative Approach: Limiting the number of moderate-risk task assignments 

(minimize orange area). 

3) Less Conservative Approach: Limiting the number of minor-risk task assign-

ments (minimize yellow area). 

Table 1. Ergonomics assessment fuzzy rules derived from [24] 

Rule No. Rule Statement 
1 IF Repetition AND Force are low, THEN the Risk Level is Acceptable 

2 IF Repetition is high AND Force is low, THEN the Risk Level is minor 

3 IF Repetition is low AND Force is high, THEN the Risk Level is moderate 

4 IF Repetition AND Force are high, THEN the Risk Level is high 

Based on the first approach, the first FS is eliminated in finding the optimum solution. 

The second approach removes the third FS. Finally, the optimum solution, in this case, 

will be the fourth FS which does not have any high-risk level and the number of its 

moderate-risk and minor-risk workstations is minimum in comparison with other FSs. 

 
Fig. 5. Ergonomics assessment of workstations in each FS 

This numerical example was developed just for explanation of our proposed optimiza-

tion framework. However, it is expected that implementation of this algorithm on real 

case studies with proper fuzzy ergonomics rules and optimum detection approaches can 

find an effective solution in Ergo-ALDPs. The developed optimization framework is a 
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versatile tool that can be customized to solve a wide range of problems under uncertain 

conditions, making it applicable to various domains. 

6 Conclusions 

Due to the importance of considering HFE in the design of manual assembly processes, 

as well as the vital role of ALs in manufacturing systems, this paper presents a practical 

procedure for optimizing the Ergo-ALDP. This study proposes a framework that inte-

grates ergonomics factors with operational parameters to optimize the ALDP in uncer-

tain conditions. The objective is to determine the optimal task assignments for a mini-

mum number of workstations while adhering to time restrictions and minimizing the 

ergonomics risk level. To achieve this objective, the study adopts a bipolar view, where 

operational aspects are considered negative preferences for producing FSs, while ergo-

nomics aspects are positive preferences for evaluating FSs and identifying the best one. 

The fuzzy set theory is employed through several membership functions and a fuzzy 

inference system that conveys various rules based on different ergonomics assessment 

techniques (EATs). 

Based on the importance of considering inconsistent conditions in the design phase 

of ALs, future study directions can include stochastic optimization models for general 

industries with typical tasks and historical data. Furthermore, more sophisticated ALs 

can be considered, and more complicated optimization models can be developed to 

probe more realistic problems. This proposed fuzzy framework could be applied to 

some case studies to be verified and validated. 
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