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Abstract. Metal Additive manufacturing (AM) is a complex operation, which 
requires the fine-tuning of hundreds of processes parameters to obtain repeata-
bility and a good quality design at dimensional, geometric, structural levels. 
Therefore, to be used as final product, metal AM parts must go through advanced 
quality control processes. This implies large capital equipment investment in 
measurement systems (i.e., tomography and lengthy inspection operations that 
adversely impact costs and lead times). A large amount of data can be collected 
in metal AM processes, as most industrial AM systems are equipped with sensors 
providing log signals, images and videos. This paper develops and proposes an 
innovative quality-oriented decision support framework, composed by a Model-
based Design tool providing Design for Additive Manufacturing features, and a 
Cyber-Physical System created by integrating an AM asset with a real-time smart 
monitoring software application. Such framework caters to process engineers and 
quality managers needs to improve a set of quality and economic KPIs. 

Keywords: metal additive manufacturing, model-based design, design guide-
line, cyber-physical systems, digital innovation hub. 

1 Introduction 

Metal Additive Manufacturing (AM) is a complex operation, which requires the fine-
tuning of hundreds of processes parameters to obtain repeatability and a good quality 
design at dimensional, geometric, structural levels (Frazier, 2014). To be used as final 
product, metal AM parts must go through advanced quality control processes. This im-
plies large capital equipment investment in measurement systems (i.e., tomography and 
lengthy inspection operations that adversely impact costs and lead times) (Wang et al., 
2021). A large amount of data can be collected in metal AM processes, as most 
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industrial AM systems are equipped with sensors providing log signals, images, and 
videos  (Slotwinski et al., 2014). In particular, small and medium enterprises (SMEs) 
are increasingly applying data analytics to extract useful information (Lamperti et al., 
2023) (e.g., by creating quality-oriented models and integrating them within their pro-
duction processes (Baijens et al., 2022)). In this context, Digital Innovation Hubs 
(DIHs) and innovation districts act as one-stop-shop to support SMEs in benefitting 
from advanced digital technologies and industrial processes (Sassanelli and Terzi, 
2022).  The development of novel decision support frameworks help raising the benefits 
to SMEs, by clarifying the information flows, the development sequences, and the mod-
els and tools’ target objectives and benefits. Accordingly, the objective of this research 
is to develop and propose a quality-oriented decision support framework, composed by 
a MBD tool providing Design for Additive Manufacturing (DfAM) features and a CPS.  

The structure of the paper is the following. Section 2 presents the research context. 
Section 3 shows the research method adopted. Section 4 presents the results and Section 
5 discusses them. Finally, Section 6 concludes the paper. 

2 Research context and main gaps 

2.1  Metal Additive Manufacturing 

Latest metal AM assets are equipped with several sensors capable to inspect operations. 
For example, Laser Powder Bed Fusion (LBPF) (known also as Direct Metal Laser 
Sintering (DMLS) or Selective Laser Melting (SLM)) machines (Aboulkhair et al., 
2019), not only builds the desired part by melting thin layers of metal powder on which 
a laser beam acts (selectively melting the powder only in the areas of interest and func-
tional to the construction of the component) but also relies on advanced sensors suited 
for detailed process monitoring (Slotwinski et al., 2014). However, data, due to the long 
process timeframe and their heterogeneity (e.g., process chamber % Oxygen, % Inert 
Gas, Pressure and Temperature, Laminar Gas Flow Speed, Laser Power, Platform Tem-
perature), are stored but not analysed in real time to monitor the production quality. 
While the role of the human process specialist is key, a solution is needed to support 
the quality acceptance decision by means of smart, real-time process monitoring. In 
fact, there are no consolidated solutions in the industrial practice capable to analyse this 
data in real-time for quality control and to provide useful information to improve the 
part and process design (Sames et al., 2016). The LBPF can be equipped with an Optical 
Tomography (OT) system that can be flanked by software platform allowing to manage 
all sensors inside the system, the related process data and the current powder bed.  

2.2 Process Simulation for AM  

AM process simulation tools are a relatively new set of computer-aided engineering 
tools, introduced into the market over the past few years. These AM process simulation 
tools can predict residual stress, distortion, microstructure, porosity, and other charac-
teristics of an AM part prior to its creation (Song et al., 2020). By simulating the effects 
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of an AM process on a specific geometry, build failures can be reduced, and shape 
changes that occur in the part can be compensated before production, so that the part 
can be produced to a higher tolerance and with a higher probability of success. A de-
tailed simulation of the whole process is typically infeasible (scanning length ranges 
from 10 to 1000 km for build volumes in the order of 104 ÷ 106 mm3). Numerical models 
can be classified on the basis of the dimensional scale of simulated phenomena in pow-
der-scale modelling (10-9 ÷ 10-6 m), layer-scale modelling (10-6 ÷ 10-3 m) and part-scale 
modelling (10-3 ÷ 1 m). Several finite element analysis tools have been developed using 
average assumptions to form a solution for large, complex geometries. Multi-scale sim-
ulations alone are still too slow to enable a complete part simulation. New computa-
tional approaches for AM are still in development to reduce the solution time for large-
scale AM problems (McMillan et al., 2017). Process simulation at part-scale can be 
used before part production to evaluate the additively part itself, since, if a failed build 
is predicted, it is possible to adapt the print by adding/strengthening support structure 
or by printing the part oversized and machining with specific design requirements.  

3 Research methodology 

The research has been carried out in two overlapping steps (Fig.1 and Table 1). The 
first step was aimed at creating and tuning the quality-oriented MBD/CPS framework. 
In it, the MBD approach contributes to make an abstraction of the technical require-
ments and to create the project file containing all the necessary instructions for the CPS, 
so to print the designed parts. Therefore, a quality check with CT-Scan, OT and metal-
lography cut-up, has been conducted to obtain quality information. Finally, quality-
oriented predictive models were created and integrated into the CPS. The second step 
was aimed at validating the framework in operation. To support the MBD approach, 
the CPS supplies the information useful to improve the project file and prints the part 
by maximizing the part quality based on the design specifications. Decision support is 
enabled by the process data analysis and through advanced data analytics, to provide 
information of the expected quality outcomes of a specific setup. Finally, AM produc-
tion has been carried out, monitored and validated (to check the improved design).  

 
Fig. 1. Project implementation steps, and information flow 
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Table 1. Research steps: Activities and details 

Step Activity Details 
1 Preparation of a 

catalogue  
of the features for aluminum parts printed with a LBPF, and of defects, to 
capture the available design know-how about this technology limits.   

1 Definition of the 
targeted defects, 
and defects-pa-
rameters correla-
tions a-priori 
identification 

the MBD tool defines part geometry, machine, and process parameters (to 
identify defect risks), and generates a project file containing the machine in-
structions (e.g., AM part oriented geometry). The part geometry includes 
simple parts (e.g., a cylinder, to allow an efficient inspection process with the 
available technologies and accurate measures of the defect grade), and com-
plex parts to induce feature-related defects (e.g., rugosity, deformations). 

1 CPS creation and 
setup 

connecting the smart monitoring solution to the AM system, to acquire ma-
chine and process data. 

1 Definition of a 
production plan  

for the defined parts (including manufacturing and inspection activities). The 
actual AM process is carried out according to the Design of Experiment 
(DOE) (machine and process data are collected by the CPS at real time).  

1 Quality infor-
mation collection  

traceability information by the OT and CT-Scan allows to link the quality 
information to the relevant job and part number. Collected quality infor-
mation need to be consistent with the targeted KPIs. 

1 Advanced data 
analytics  

a data fusion approach is evaluated (e.g., by integrating hot spots data and 
defects data). Quality-oriented predictive models are created, suitable to be 
executed in real-time. Data fusion consists of a multiple data elaboration to 
obtain a quality index (e.g., the volumetric energy supplied to the metal pow-
der bed to be correlated to the material densification). 

1 Models and CPS 
integration  

to enable a smart process monitoring 

2 Part design im-
provement 

the MBD tool are applied to production parts representative of common AM 
challenges (e.g., a structural component) utilizing the information provided 
by the CPS to support decisions and improve the design. 

2 Improved parts 
monitoring and 
inspection 

though the application of the quality-oriented models, to validate the im-
proved design and the smart monitoring features. 

2 Approach contri-
bution evaluation  

to check business objectives achievement and plan future development activ-
ities accordingly. 

3.1 The case and its partners 

The partners of this research are three SMEs: EnginSoft (the technology provider), 
and KM Rosso and Pres-X (as technology adopters). EnginSoft role included the re-
search coordination, MBD tool application, development of the CPS and framework 
integration. Kilometro Rosso role included performing DfAM activities, providing the 
AM asset and carrying out the actual prototyping production, and act as a testbed for 
the framework. Pres-X dealt with the AM processes, and in particular quality control 
& post processing processes, and materials characterization activities. 

4 Results 

The main result of this paper is a quality-oriented decision support framework, com-
posed by a MBD tool providing DfAM features (i.e., ANSYS additive suite), and a CPS 
(created by connecting the EOS M290 machine with the Smart ProdACTIVE smart 
monitoring solution) (Fig. 2), also applied and validated in a pilot application case. 
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Fig. 2.   Quality-oriented decision support framework: main elements 

The Ansys Additive Suite delivers the critical insights required for the development 
and analysis of an AM product to avoid build failure and create parts that accurately 
conform to design specifications. This comprehensive solution spans the entire AM 
workflow (from DfAM through validation, print design, process simulation and explo-
ration of materials). Related to the MBD, it offers dedicated tools to support the design 
of a product suitable to be realized with metal AM (in particular, LPBF).  

The EOS M290 machine uses a LPBF process, combined with a software (EOS con-
nect), that relies on advanced sensors suited for detailed process monitoring. 

Smart ProdACTIVE is an integrated smart monitoring solution that connects pro-
duction processes data sources (machines, sensors) with software modules offering 
smart features. It provides a centralized production monitoring via a network of data 
acquisition agents, a flexible database to persist and manage production processes data, 
a web-based application for remote monitoring of the process stability, and KPIs such 
as efficiency and costs, smart monitoring features enabling production optimization, 
active real-time application of predictive models (e.g., quality-oriented models). Data 
analysis approach have been performed on the data to create quality-oriented predictive 
models: such models have been integrated into the Smart ProdACTIVE system to inte-
grate real time smart monitoring features, in turn enabling a better decision making.  

4.1 Features and defects catalogue for Metal AM 

A catalogue of the features for aluminum parts that can be printed with a LBPF, and of 
typical defects, has been created. It aims to capture the available design know-how re-
garding the advantages and limits of the metal AM technology. A specific focus has 
been given to LBPF process, and to the material used for project activities (AlSi10Mg). 
The catalogue is subdivided into 3 main sections: (i) process description, workflow and 
advantages; (ii) material details (with information on chemical and mechanical proper-
ties); (iii) aspects related to DfAM (about what may be the features to be controlled and 
verified in the components). These guidelines are useful to reduce the errors that could 
bring to the failure of the manufacturing process. Following these instructions, sugges-
tions, and strategies, it is possible to achieve the best results in AM with fewer itera-
tions. In this study, a qualitative comparison between MBD simulation output (e.g., 
stress concentration, final deformation, errors in post processing) and the actual process 
data and results (as evaluated by means of CT scan and metallographic inspections da-
tasets) has been performed. The catalogue substantiates the link between the MBD and 
the CPS and can be generalised and applied to different AM processes and materials. 
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4.2 Application to the pilot application case  

The framework developed has been applied to the pilot case shown in sub-section 3.1 
going through a series of steps, as follows. 
Definition of the targeted defects and a-priori identification of the potential corre-
lations. First, the targeted defects have been defined, focusing on porosity (as expressed 
by DMQ) and on shape variation from the nominal one. The a-priori identification of 
the potential correlations between such defects and parameters has been carried out by 
discussing process experience, reviewing nominal process parameters for the targeted 
alloy and the information available in literature, and by MBD DOEs execution.  
Starting from the standard process parameters for the selected alloy, and qualitative 
considerations, multiple DOEs have been defined and executed using the MBD tool 
(ANSYS Additive Suite), to identify potential areas of interest for the subsequent phys-
ical DOEs. MBD simulation allowed to explore areas of the parameter space that are 
relatively distant from the standard parameters suggested for a given process-machine-
alloy combination. The solver can predict lack-of-fusion porosity via the powder-solid 
state tracking but does not predict balling or keyhole phenomena. The simulations 
helped to identify areas of the parameters space where lack-of-fusion porosity would 
happen, providing relevant information about meltpool size and the resulting density. 
Initial CPS setup. The CPS has been created (installing Smart ProdACTIVE on a vir-
tual machine connected to the EOS M290 system through the EOS CONNECT Core 
OPC UA interface module) and configured to acquire all available endpoints (49 tags). 
Physical DOE setup. Starting from the virtual DOEs results, the physical DOEs have 
been defined for machine and process constraints (e.g., the maximum laser power avail-
able for the EOS M290 of 370 W). Cylindrical specimens have been selected for the 
physical DOEs, being the most suitable shape to conduct inspection activities and to 
determine the quality output (i.e., DMQ). The first physical DOE has been defined by 
varying laser power and laser scan speed while keeping the other parameters constant.  
CPS adaptation and improvement. The initial CPS tests clarified the need to install, 
configure and connect additional process monitoring technologies to expand the scope 
of the monitored process data.The a-priori identification of the potential correlations, 
confirmed by the MBD simulations, provided evidence of the need to identify suitable 
process data related to the volumetric energy density not provided by the EOS 
CONNECT system. Therefore, to grasp these data, the EOSTATE Monitoring Suite 
advanced technologies has been added. It is composed of EOSTATE Exposure OT, 
providing OT, and EOSTATE MeltPool Monitoring, measuring the quantity of energy 
transferred by the laser locally. Both technologies provided grey values, representing 
the intensity of the light emitted by the bed fusion or meltpool, offering measures of 
energy deposition. To acquire the grey values, as EOSTATE data is not provided by 
any protocol, a Smart ProdACTIVE client has been configured to poll the CSV file 
during production and ingest the grey value data, together with job, part and layer in-
formation, as they are available.  
Finalization of the catalogue of features and defects for Metal AM. Process defects 
guidelines have been augmented with qualitative considerations regarding the usage 
and outputs of process simulation tools. In this research, the study refers to the ANSYS 
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product family, but can be easily expanded to include other simulation products.  
Part design improvement by MBD tool application. The structural part selected for 
this activity is presented in Fig. 3. This complex design presents a set of geometrical 
features common for metal AM parts, therefore it can be considered representative of a 
typical DfAM challenge. Its complexity may induce feature-related defects (e.g., ru-
gosity, deformations). The MBD tool (ANSYS Additive Suite) has been applied to gen-
erate different project files containing the machine instructions for the selected struc-
tural component. To determine the impact of the framework, two different project files 
have been targeted: a baseline project file, designed without considering the catalogue 
of features and defects; and an improved project file, designed considering the best 
practice described in the catalogue. Simulation results unveil that, compared to the 
nominal shape, the improved project shows a relevant reduction of the residual stresses 
(50 MPa reduction), and a 200% reduction of the maximum deformation. A visual com-
parison between the nominal and the resulting shapes confirms that the baseline job 
may generate problematic shape variations in critical features (e.g., support holes). 

  
Fig. 3. Left: Structural component selected for the framework application. Center (improved job) 
and right (baseline job): Nominal (grey) vs resulting (green) shape comparison. 

Shape variations were measured on the improved design by applying OT inspection. 
Results shown that the variations are limited and inferior to the values predicted by the 
process simulation. Table 2 describes the features catalogue applied to improve the 
baseline job design towards KPI4 (Reduce the complexity of design by abstraction). 

Table 2. Features catalogue applied to improve the baseline job design towards KPI4 

Category Feature Guideline Baseline design Improved design 
Part ori-
entation 

Overall 
build 

“… self-supporting an-
gle between 45°/50°” 

Excessive slope 
angles 

Positioning angle has been 
improved 

Downfac-
ing sur-
faces 

“… avoid big overhang 
sections or large down-
facing sections” 

Excessive unsup-
ported overhang 

Overhang has been re-
duced by part orientation 

Shrink 
lines 

 Does not take into 
account the sup-
port structures 

Considering the support 
structures provides a better 

orientation 
Support 
genera-
tion 

Thermal 
stresses re-
duction 

“Support structure is 
needed to avoid warp-
ing and to keep part in 
position.” 

Inadequate ther-
mal dissipation 
leading to in-

creased stresses 

Support structure with ad-
equate sections help dissi-

pating heat 

Holes Straight  Inadequate hole 
support 

Block Support structures 
have been increases to pre-

vent dross formation 
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Surfaces Influence 
on quality 

“… avoid big overhang 
sections or large down-
facing sections” 

See downfacing 
surfaces 

See downfacing surfaces 

TOTAL BEST PRACTICES APPLIED 6 

5 Discussion 

5.1 KPIs of the quality-oriented decision support framework 

The following KPIs (Table 3) have been monitored and evaluated. KPI1 is about DMQ 
and has been measured during the printing phase via metallographic analysis through a 
smart monitoring system integrating also a predictive MBD approach to monitor the 
production and to identify potential issues in-process. KPI2 measures the shape varia-
tion improvement by MBD by comparing the variation respect to the nominal shape of 
a geometry produced using a job not evaluated with MDB and the same geometry pro-
duced using an optimized process by application of MBD. KPI3 (Lead time reduction) 
wants to reduce the number of the quality control (mostly, volumetric) on parts once 
printed. KPI4 (Reduce the complexity of design by abstraction) tracks the number of 
design iterations (virtual and/or actual), that can be reduced thanks to the application of 
the features catalogue throughout the MBD.  

Table 3. KPIs: baseline, target, and results achieved 

KPI Baseline Target Results achieved 
KPI – Quality im-
provement 1 (DMQ) 

DMQ ≈ 99.4 % DMQ ≥ 99.5 % DMQ ≥ 99.8 % 

KPI2 – Quality impr. 
2 (shape variation 
through MBD) 

Baseline model 
shape variation 

Model shape vari-
ation improved 
(>20%) 

200% improvement observed in 
simulation. Estimates have been 
confirmed by inspection. 

KPI3 – Lead time re-
duction 
 

100% control on all 
critical printed com-
ponents (32h in 4d) 

80% control on all 
critical printed 
components 

80% control feasible with in-
process smart monitoring. 15% 
processing time reduction with-
out DMQ degradation. 

KPI4 – Reduce the 
complexity of design 
by abstraction  

No design process 
checklist 

≥5 guideline steps 
applied 

6 guideline steps applied to im-
prove the baseline design. 

5.2 Value proposition of the quality-oriented decision support framework 

Results end users are identified as AM process engineers and quality managers. Fig. 
4 presents the Value Proposition Canvas for such roles. The framework value proposi-
tion consists of an innovative metal AM production workflow, which enables the qual-
ity optimization of the project design. The proposed approach facilitates the reduction 
of defects occurring during the production process, such as the distortions of the com-
ponent during their realization, leading to shapes that may not comply with the original 
design and may eventually hit the dust spreading blade, also blocking the printing job. 
While foreseeing these defects, the framework enables to reduce the number of attempts 
needed to obtain the desired component so to reach the result in less time and cost.  
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Fig. 4. Value Proposition for Quality Manager (up), and AM Process Engineer (down) user 

The framework provides AM SMEs with an innovative solution to address produc-
tion defects in metal AM. Defects at the macro scale can be identified by the process 
simulation, while defect at the meso and micro scale can be analyzed, modelled, and 
predicted by applying advanced quality-oriented modelling to real time process data. 
The proposed framework provides a significant contribution for improving the metal 
AM production at various stages. During the MBD stage, through process simulation 
and a feature catalogue enriched with experimental and virtual information, the frame-
work provides quality-oriented support to product/process design decision leading to 
improved product and processes, better asset utilization, improved predictability, and 
lower scrap rates. During the Quality Assurance stage, applying a CPS capable of de-
tecting quality issues at real time, improved process monitoring enabling process qual-
ity conformity declaration. Finally, in the Quality Control stage, by application of val-
idated predictive models, a smarter process control (e.g., from wide inspection areas 
and range of defects to targeted areas and specific defect types) enables the implemen-
tation of different policies and cost reduction (e.g., from 100% inspection to sampling).  

6 Conclusions 

This research demonstrated that manufacturers can improve their metal AM processes 
by systematically applying an innovative quality-oriented decision support framework. 
Such framework assists the component design providing a checklist of best practices 
and qualitatively links them to DfAM MBD-tools features (e.g., through ANSYS addi-
tive suite). It also provides valuable insight regarding the manufacturing process and 
the relationship between process parameters combinations and quality results. Once 
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integrated in the design process, they enable the confident selection of parameters sets 
different from the nominal ones. Finally, it integrates a CPS by augmenting an AM 
asset with a real-time smart monitoring software application. This allows to guarantee 
and improve a set of quality (i.e., component density) and economic KPIs (e.g., lead 
time). The validated quality-oriented predictive models can be further enriched by ex-
panding the DOEs and considering additional data and parameters. 
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