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Abstract. Object detection and other machine learning technology applica-

tions play an important role in various areas of computer vision (CV) applications 

within the product lifecycle, especially in quality assurance or general assembly 

assistance. While the implemented CV-based systems provide great benefits, 

training and implementing deep learning models is often a tedious and time-con-

suming task, especially in the field of object detection. To accomplish good re-

sults, large datasets with a high quantity of object instances in a bright variety of 

poses are required These are generally created manually and are therefore very 

time consuming to create. 

To improve the training process, synthetic training data can be used. It is gener-

ated within a virtual environment using a product’s geometry model. In this pa-

per, the authors propose a synthetic dataset generator for object detection, that is 

integrated into a PLM system to automate the process of collecting and pro-

cessing the CAD data for creating the synthetic machine learning training dataset. 

Domain randomization is used to eliminate the effort of creating a virtual envi-

ronment, to fully automate the dataset generation, and to increase the generaliza-

tion of the model. The trained detector is tested on an object detection demon-

strator set-up to evaluate its performance in a real-world use case. For evaluation 

purposes, the authors also provide a comparison of the test results to an object 

detection model that is trained without domain randomization, using a very close-

to-reality virtual environment.   

Keywords: deep learning, synthetic data generation, PLM integration, object 

detection, computer vision. 

1 Introduction 

 

The demand for increasing degrees of automation in different parts of the product 

life cycle inevitably leads to an increase in the complexity of the required assistance 

systems. In many areas machine learning (ML) can fulfill this need completely or par-

tially. ML has an enormous potential for the support of assembly and disassembly pro-

cesses, quality assurance, or in the improvement of product traceability, especially 

when using computer vision (CV) techniques. However, the implementation of ML 

systems is associated with high initial effort, particularly for the ML training process. 

A large amount of suitable training data is necessary for CV applications to work 
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reliably. It is therefore necessary to create new data sets for the detection of each new 

individual product. This includes not only the creation of images of the respective prod-

ucts, but also the correct and precise labeling of the collected images. This process is 

not only associated with an immense amount of work but is also error-prone and liter-

ally impossible to obtain precise results manually, as is the case with the segmentation 

of image objects. To solve these problems, the approach is to use synthetic data. The 

term ‘synthetic data’ refers to information that does not originate from real sources. In 

CV, for example, a renderer is used to generate images of the desired objects. Infor-

mation about position and orientation of the objects is known to the rendering engine 

and can therefore be added automatically to a generated data set for labelling purposes 

in supervised machine learning approaches. In this way, in a comparatively short time 

frame, any amount of data can be generated and used for training a neural network. The 

only prerequisite for generating the data is the availability of 3D representations of the 

objects of interest and their accuracy in depicting the (physical) objects that are to be 

detected later in the process. PLM systems are therefore ideally suited as a data source 

for the synthetic data generation process. 

This is the first paper of a total of three. As presented in figure 1. the overall vision 

is to build an assistant assembly workstation, using deep learning algorithms to assist 

the assembly process. The workstation will be set up automatically, by generating the 

needed training data, based on the 3D representations of the objects to be detected. 

Further analysis on the parts will be conducted to increase the performance of the sys-

tem. This includes grouping similar and ignoring smaller objects. In this paper, the au-

thors focus on the first aspect and present a data generation pipeline to fully automate 

the process of generating synthetic data for object detection. Additionally, the data gen-

erator is connected to a PLM system to demonstrate the integration capabilities of the 

proposed solution with existing systems and workflows.  

Fig. 1. Overview of the three aspects to be covered.  

2 Related Work 

This chapter covers use cases for CV applications in various parts of the product lifecy-

cle. Additionally, we will cover modern synthetic data generation tools. 
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2.1 Computer Vision 

In (dis)assembly processes, the correct identification and localization of components is 

a necessary requirement for the automation of work steps. For the removal of screws in 

a PCB with a robotic arm, Mangold et. al used an object detector, which made it possi-

ble to determine the correct tool for different types of screws [1]. Therefore, performing 

the required work steps could be fully automated. Another screw detection detector for 

robot disassembly was implemented by Brogan et. al [2]. CV algorithms also play a 

major role in quality control. Basamakis et. al used an object detector to determine 

missing, correctly or incorrectly assembled rivets and achieved a total accuracy of 83% 

[3]. 

2.2 Synthetic Data 

A variety of options exist for generating synthetic data for CV use cases, such as the 

Perception tool for the Unity 3D Engine [4]. Another generator is Nvidia’s Omniverse 

Replicator, based on Nvidia’s Omniverse platform [5]. It can create graphically detailed 

data through the native use of ray tracing. In 2022, Google Research introduced the 

Kubric data generator [6]. It is based on the Blender render engine and uses the Bullet 

physics simulation. With SynthAI [7], Siemens offers a cloud service for the generation 

of synthetic data based on CAD files. 

Synthetic data is particularly useful when not enough data can be collected through 

classical methods to ensure sufficiently good performance of the trained AI model. In 

addition, it often requires less effort to create a suitable data set and is therefore more 

cost-effective. In consequence, some datasets have synthetic twins to increase the total 

amount of training data, like the virtual KITTI dataset [8]. Another way of creating 

synthetic data is by using a Generative Adversarial Network (GAN). This particular 

type of deep learning network can be trained on smaller real datasets and can then be 

used to augment the dataset with synthetic data to produce a sufficiently large amount 

of training samples [9]. 

3 Aims and Requirements 

In the context of the presented research work, it is investigated how to integrate the 

synthetic data generation process in a PLM system for full automation. This enables the 

use of ML while keeping the required expert knowledge in the field of ML very low. 

The PLM system takes the role of the data source, workflow engine, and, after comple-

tion of the data generation, the role of the data provider for the ML application. The 

generated data set is used for training an object detector to check the quality of the data 

set. For this purpose, the object detector is tested with a dataset containing real images, 

which were labeled manually. In addition, a second synthetic data set is generated man-

ually, which represents the properties of the test environment as accurately as possible. 

This allows a quality comparison of the two detectors and a classification of the practi-

cability of using the general data set. 

https://en.wikipedia.org/wiki/Generative_adversarial_network
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The goal of this work is the development and validation of a concept for the auto-

matic generation of a synthetic data set for CV problems, in connection with a PLM 

system for the management of the detected objects. The data set generation process is 

to be started and monitored from within the PLM system. The generated data set should 

support the most common CV problems, such as 2D/3D object detection, object seg-

mentation or depth estimation. In addition, there may be little to no knowledge about 

the real-world application domain of the ML model at the time of training data genera-

tion. Therefore, there is a requirement for general applicability of the dataset, which 

will involve domain randomization. 

4 Concept 

In this chapter, the concept is presented and explained in detail Firstly, the data set 

generator to create the CV data set based on a general service interface. Secondly, we 

elaborate on a PLM system integration that manages the work process as well as the 

parts and components involved. The last section of this chapter deals with a connector 

for the communication of the PLM tenant with the dataset generator. 

4.1 Dataset Generator 

The dataset generator is responsible for generating and creating the CV dataset inde-

pendently from other components. The core of the generator is the render engine, which 

is used to create images from a virtual 3D scene. The properties of the scene, such as 

background, lighting and shadows, as well as the orientation and position of the objects 

in the scene, depend on the parametrization. The choice of these properties plays a de-

cisive role in the performance of the model trained on this data set. If crucial features 

of the test environment or of the objects to be recognized are missing, the model is 

limited in its ability to correctly interpret the test inputs. However, the development of 

a data set adapted to the test environment requires previous domain knowledge that 

then influences the test environment setup. To solve this problem, the concept of do-

main randomization is used [10]. Here, the training environment is randomized in as 

many properties as possible and feasible. This increases the variance of the training 

data and provides a better generalization of the model. In this way, a generally usable 

data set can be generated, which can additionally be extended with a lesser amount of 

training data with high domain knowledge about the test environment to further in-

crease the performance of the model in said environment. In the Outcomes chapter, the 

performance of an object detector trained with a synthetic dataset based on the pre-

sented concept is discussed in more detail, as well as the general usability of such a 

dataset. 

 The structure of the virtual 3D scene consists of a dome, a hemisphere with a bottom 

plate. A High Dynamic Range Image (HDRI) texture is placed on the inside of the 

geometric body. This texture contains not only a texture, but also information about the 

light properties of the scene. Inside the dome, an arbitrary number of objects, which are 

to be identified later in the process, are placed, with random orientation and position. 
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Finally, a virtual camera is placed and aimed at the center of the floor at a random height 

inside a defined spectrum. To further increase randomization, the color of the objects 

can also be varied. Since the position and orientation of the objects are precisely known 

in the virtual space, annotation information, such as bounding boxes or segmentation, 

can be automatically generated. 

In order to be able to interact with other services, such as PLM systems, the generator 

provides a RESTful webservice interface. An endpoint is used to place a request for 

data set generation. The jobs are processed according to the ‘First In - First Out’ (FIFO) 

principle. A job consists of several settings or parameters, that are stated in Table 1. 

The Webhook mail address defines an optional URL. If the dataset generation status 

changes, a POST request with the corresponding status is sent as payload to the defined 

URL. This way the generator can inform about the start and the completion of the gen-

eration. Also, errors that occur during the generation can be forwarded. The return of 

the POST request is a UID for the unique identification of the order. 

The finished data record can be downloaded as an archive via a second endpoint. In 

addition, the current status of the order can also be queried directly via a third endpoint. 

For the last two endpoints, the order UID is required. 

4.2 Connector 

One challenge in designing the interface of the generator is the very different approach 

between current PLM systems regarding interface connectivity. These vary greatly in 

their range of functions, such as handling with Webhooks and documents or 3D repre-

sentations. Depending on the system, interaction with the interface of the data set gen-

erator is therefore not possible without restrictions. To solve this problem, a connector 

is designed. The connector is a micro service and is located as the middle man of the 

communication between the generator and the PLM system. Its task is to override or 

adapt the communication, so that a correct and successful data exchange can be guar-

anteed and the use of the full functionality of the PLM system can be ensured. Since 

the connectors are adapted to one system at a time, a connector must also be developed 

for each supported PLM system. The scope of the connector and thus also the imple-

mentation effort depends on the particular PLM system used. 

Table 1. Dataset creation parameters with default, min and max values 

Parameter Default Value Min. Value Max. Value 

Dataset Size 5 1 1000 

Resolution 256 x 256 64 x 64 512 x 512 

Scale 1.0 0.01 100.0 

Color Uniform Sample   

Obj. Min. Occurrences 1 0 Obj. Max. Occurrences 

Obj. Max Occurrences 5 Obj. Min. Occurrences  

Webhook URL Not set   
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4.3 PLM-System 

A PLM system is used to manage product relevant data, in particular the parts to be 

detected, including their 3D representations and all other. In addition, the data genera-

tion workflow of the respective item is started and monitored by the PLM system via 

the connector. The workflow is linked to a single object, so that a generated data set 

always represents exactly one object. The workflow consists of five states and is dis-

played in figure 2. 

The initial state is the start state of the workflow and describes that a data generation 

job can be created. If a data generation job is created, the availability of the required 

3D representation of the selected object as an attachment or document is checked. If 

the availability is given, the adapter is informed about the existence of the new order, 

which forwards it to the generator. In addition, the connector registers with the genera-

tor via Webhook to be informed about events. In this way, the connector can trigger the 

correct transition to the current state in the PLM system after receiving the information. 

If the generation is completed, a mail including the download link of the generator is 

created and sent to the owner of the respective object in the PLM system.  

For the transitions to be triggered, a user with the appropriate rights profile is created 

and managed by the connector or used by it. 

 

Fig. 2. Data generation workflow 

5 Implementation 

The implementation of the data generator is based on the data generation pipeline Ku-

bric [6] from Google Research. It is able to generate a variety of different types of CV 

data sets, like segmentation, bounding box or depth estimation. Kubric uses Blender as 

the render engine. Also, PyBullet is used as physics engine to simulate physically cor-

rect collisions of objects, if desired. This way, more realistic data can be generated, but 

it also requires more complex processing of the objects, due to the generation of a col-

lision mesh, and is therefore not used in this implementation. The objects are instead 

randomly placed and oriented in the scene, within an area of 0.3m x 0.3m around the 

origin at a height of 0.01m. This ensures that the objects are captured by the camera. 

HDRI textures for the background and lighting of the scene are provided by Kubric via 

an API from HDRI-Heaven and placed on the inside of the dome. A total of up to five 
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shots are taken per scene. The positions and orientations of the objects vary in each 

shot. However, the texture of the background remains the same for each scene. 

The data generation takes place in a worker sub-process. The main process hosts the 

REST API. Jobs are managed in a FIFO data structure and processed accordingly. The 

Kubric process uses the webhook URL to inform if a job finished successfully or with 

errors. The IDs of successful jobs are managed in a separate data structure, so that the 

API can make these records available for download. Figure 3 shows this process se-

quence graphically. In addition, records older than 24 hours are deleted by a third pro-

cess to optimize the application's memory consumption. 

 

Fig. 3. Sequence Diagram of the dataset generation workflow 

For the prototype implementation and evaluation purposes, Autodesk Fusion Man-

age 360 is used as the PLM system. A workspace in Fusion Mange is created, including 

a workflow as described in the concept. During the transition from the "Initial state" to 

the "Data Generation Requested” state, a script is called that searches for an OBJ file 

with the same name as the object in the attached documents in the Workspace. There-

upon a POST request is sent to the connector. This contains the parameters described 

in the concept for the data set generation and additionally the WorkspaceID, ItemID 

and TransitionsIDs of the PLM system, so that the transitions to be switched can be 

identified and triggered by the connector. The comment of a transition is read in by the 

script. This way the user is able to change the parameters for the dataset generation. 

The ClientID and the Client-Secret of a user with the corresponding rights profile for 

switching the transitions are stored in the connector. 

6 Outcomes 

In order to validate the general usability of a generated data set, a test procedure is 

developed and carried out. In total, three reality-based data sets are created. The first 

one consisting of 50 photos and the second one consisting of 20 photos, for 2D bound-

ing Box detection, are created with a single object class. The third dataset also contains 

50 samples but has five different object classes, instead of just one. The real scene used 

has good lighting conditions and a monochrome gray tabletop as background, to mimic 

a typical assembly workstation, but without any distracting objects. Light and back-

ground remain unchanged during the acquisition of the datasets. Only the number, ori-

entation and position of the objects differ. The first and third one do not contain any 
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overlapping bounding boxes and have a sparser object arrangement. The second reality-

based data set contains a very tight arrangement of the objects, including overlapping 

bounding boxes. All three data sets are used to test three different object detectors 

trained with synthetic data. Detector A is trained on a data set created with the help of 

the data generator. Accordingly, many properties of the virtual scene are randomized. 

This also applies to the color of the objects. Detector B is trained on a synthetic dataset, 

which is strongly adapted to the test environment, using Unity3D. In this dataset, the 

background, the lighting conditions, and the color of the objects match the real envi-

ronment. Likewise, the objects were placed physically correctly on the background. 

Both training datasets only have a single object class. For the third test dataset with 

multiple classes, a third detector is trained using a third train dataset with synthetic 

images generated by the proposed data generator. 

The first two training data sets each consists of 1000 images. The third one consists 

of 5000 images. 1000 images for each object class. Currently the data-generator is only 

able to handle one object at a time. To be able to train multiple classes, one dataset for 

each object is generated. Afterwards the datasets are combined. Figure 4 shows a com-

parison of images from the three synthetic training datasets and the three real test da-

tasets. 

Fig. 4. Samples of the synth. training data in the first row (left and middle one generated by the 

data-generator, right one with Unity3D) and the real test data in the second row (left sparse, 

middle tight and right mul. class dataset) 

The time needed to generate a single synthetic dataset for one object class with the 

implemented generator takes approximately 45 minutes for 1000 samples. The genera-

tion time is not only depended on the available hardware and the applied resolution, but 

it also depends on the images rendered per scene. With five images rendered each scene, 

half of the total generation time is conducted for creating the virtual blender environ-

ment. Increasing this value would therefore lower the generation time. All models were 

trained for a total of 300 epochs, using the small version of the yolov5 object detection 

model [11]. 
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Table 2. Test results for all three detectors 

 

Precision is a percentage value that relates the amount of correctly identified objects to 

the amount of all objects supposedly found by the model. Recall is the amount of cor-

rectly identified objects relative to the number of objects that should have been de-

tected. Mean Average Precision (mAP) also considers the Intersection of Union of the 

bounding boxes. For mAP50, the IoU ranges from 50% to 95%, with a step size of 5%. 

 

As shown in Table 2. detectors A and B achieved near perfect results on the first dataset 

and can identify and localize the objects within the image with only a hand full of false 

detections. The better performance of model B is expected, due to the training data 

adapted to the test environment but is only slightly pronounced. The tests on the second 

dataset reveal a huge performance gap between the two detectors. The mean average 

performance of detector A is eleven times better than that of detector B. 

The third detector, trained and tested on multiple classes does not perform as perfect as 

detector A and B on the sparse dataset, but is still able to correctly detect the objects in 

most cases.  

7 Conclusion 

In conclusion, the test procedure validates the usability of the generated data set for 

training an object detector for simple structured environments. This includes environ-

ments without distractions, such as objects not to be detected, with optimal lighting 

conditions and a rather sparse arrangement of the objects. In such a case, the compari-

son between model A and B shows, that dealing with the effort of adapting the training 

dataset to the test domain, or even creating a training dataset manually, is not worth the 

effort and can be automated by using domain randomization. While the data-generation 

pipeline currently only supports one object per dataset, combining the generated da-

tasets for multiple class problems is a feasible approach for the number of classes tested. 

In a more complex environment, the detector A trained on the randomized synthetic 

data fails to reliably identify and localize the individual objects, while detector B still 

performs reasonably well. Accordingly, the cause of the breakdown in the performance 

of detector A is to be found in the randomized synthetic data set and the randomized 

properties of the virtual scene. In order to increase the robustness of a detector trained 

on a randomized data set, tight arrangements of the objects in the virtual scene can be 

Model Dataset Precision Recall mAP50 

Detector A sparse 0.980 0.974 0.982 

Detector B sparse 1.000 0.993 0.995 

Detector A tight 0.211 0.085 0.077 

Detector B tight 0.918 0.785 0.851 

Detector C mul. classes 0.800 0.937 0.911 
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made. A subdivision of the data set into different groups based on edge cases to be 

mapped is conceivable. 

The authors were able to demonstrate that an end-to-end process for the generation 

of synthetic datasets for CV problems can be fully automated and linked to a PLM 

system. The required expertise in the field of machine learning for the creation of such 

a dataset is very low and can therefore be well integrated into the PLM environment.  
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