
Investigation of an integrated synthetic dataset genera-

tion workflow for computer vision applications

Julian Rolf [0000-0002-3215-9265], Mario Wolf [0000-0002-0628-7570], Detlef Gerhard [0000-0002-3266-

7526]

Ruhr-Universität Bochum, Germany
julian.rolf@ruhr-uni-bochum.de

Abstract. Object detection and other machine learning technology applica-

tions play an important role in various areas of computer vision (CV) applications

within the product lifecycle, especially in quality assurance or general assembly

assistance. While the implemented CV-based systems provide great benefits,

training and implementing deep learning models is often a tedious and time-con-

suming task, especially in the field of object detection. To accomplish good re-

sults, large datasets with a high quantity of object instances in a bright variety of

poses are required These are generally created manually and are therefore very

time consuming to create.

To improve the training process, synthetic training data can be used. It is gener-

ated within a virtual environment using a product’s geometry model. In this pa-

per, the authors propose a synthetic dataset generator for object detection, that is

integrated into a PLM system to automate the process of collecting and pro-

cessing the CAD data for creating the synthetic machine learning training dataset.

Domain randomization is used to eliminate the effort of creating a virtual envi-

ronment, to fully automate the dataset generation, and to increase the generaliza-

tion of the model. The trained detector is tested on an object detection demon-

strator set-up to evaluate its performance in a real-world use case. For evaluation

purposes, the authors also provide a comparison of the test results to an object

detection model that is trained without domain randomization, using a very close-

to-reality virtual environment.

Keywords: deep learning, synthetic data generation, PLM integration, object

detection, computer vision.

1 Introduction

The demand for increasing degrees of automation in different parts of the product

life cycle inevitably leads to an increase in the complexity of the required assistance

systems. In many areas machine learning (ML) can fulfill this need completely or par-

tially. ML has an enormous potential for the support of assembly and disassembly pro-

cesses, quality assurance, or in the improvement of product traceability, especially

when using computer vision (CV) techniques. However, the implementation of ML

systems is associated with high initial effort, particularly for the ML training process.

A large amount of suitable training data is necessary for CV applications to work

2

reliably. It is therefore necessary to create new data sets for the detection of each new

individual product. This includes not only the creation of images of the respective prod-

ucts, but also the correct and precise labeling of the collected images. This process is

not only associated with an immense amount of work but is also error-prone and liter-

ally impossible to obtain precise results manually, as is the case with the segmentation

of image objects. To solve these problems, the approach is to use synthetic data. The

term ‘synthetic data’ refers to information that does not originate from real sources. In

CV, for example, a renderer is used to generate images of the desired objects. Infor-

mation about position and orientation of the objects is known to the rendering engine

and can therefore be added automatically to a generated data set for labelling purposes

in supervised machine learning approaches. In this way, in a comparatively short time

frame, any amount of data can be generated and used for training a neural network. The

only prerequisite for generating the data is the availability of 3D representations of the

objects of interest and their accuracy in depicting the (physical) objects that are to be

detected later in the process. PLM systems are therefore ideally suited as a data source

for the synthetic data generation process.

This is the first paper of a total of three. As presented in figure 1. the overall vision

is to build an assistant assembly workstation, using deep learning algorithms to assist

the assembly process. The workstation will be set up automatically, by generating the

needed training data, based on the 3D representations of the objects to be detected.

Further analysis on the parts will be conducted to increase the performance of the sys-

tem. This includes grouping similar and ignoring smaller objects. In this paper, the au-

thors focus on the first aspect and present a data generation pipeline to fully automate

the process of generating synthetic data for object detection. Additionally, the data gen-

erator is connected to a PLM system to demonstrate the integration capabilities of the

proposed solution with existing systems and workflows.

Fig. 1. Overview of the three aspects to be covered.

2 Related Work

This chapter covers use cases for CV applications in various parts of the product lifecy-

cle. Additionally, we will cover modern synthetic data generation tools.

3

2.1 Computer Vision

In (dis)assembly processes, the correct identification and localization of components is

a necessary requirement for the automation of work steps. For the removal of screws in

a PCB with a robotic arm, Mangold et. al used an object detector, which made it possi-

ble to determine the correct tool for different types of screws [1]. Therefore, performing

the required work steps could be fully automated. Another screw detection detector for

robot disassembly was implemented by Brogan et. al [2]. CV algorithms also play a

major role in quality control. Basamakis et. al used an object detector to determine

missing, correctly or incorrectly assembled rivets and achieved a total accuracy of 83%

[3].

2.2 Synthetic Data

A variety of options exist for generating synthetic data for CV use cases, such as the

Perception tool for the Unity 3D Engine [4]. Another generator is Nvidia’s Omniverse

Replicator, based on Nvidia’s Omniverse platform [5]. It can create graphically detailed

data through the native use of ray tracing. In 2022, Google Research introduced the

Kubric data generator [6]. It is based on the Blender render engine and uses the Bullet

physics simulation. With SynthAI [7], Siemens offers a cloud service for the generation

of synthetic data based on CAD files.

Synthetic data is particularly useful when not enough data can be collected through

classical methods to ensure sufficiently good performance of the trained AI model. In

addition, it often requires less effort to create a suitable data set and is therefore more

cost-effective. In consequence, some datasets have synthetic twins to increase the total

amount of training data, like the virtual KITTI dataset [8]. Another way of creating

synthetic data is by using a Generative Adversarial Network (GAN). This particular

type of deep learning network can be trained on smaller real datasets and can then be

used to augment the dataset with synthetic data to produce a sufficiently large amount

of training samples [9].

3 Aims and Requirements

In the context of the presented research work, it is investigated how to integrate the

synthetic data generation process in a PLM system for full automation. This enables the

use of ML while keeping the required expert knowledge in the field of ML very low.

The PLM system takes the role of the data source, workflow engine, and, after comple-

tion of the data generation, the role of the data provider for the ML application. The

generated data set is used for training an object detector to check the quality of the data

set. For this purpose, the object detector is tested with a dataset containing real images,

which were labeled manually. In addition, a second synthetic data set is generated man-

ually, which represents the properties of the test environment as accurately as possible.

This allows a quality comparison of the two detectors and a classification of the practi-

cability of using the general data set.

https://en.wikipedia.org/wiki/Generative_adversarial_network

4

The goal of this work is the development and validation of a concept for the auto-

matic generation of a synthetic data set for CV problems, in connection with a PLM

system for the management of the detected objects. The data set generation process is

to be started and monitored from within the PLM system. The generated data set should

support the most common CV problems, such as 2D/3D object detection, object seg-

mentation or depth estimation. In addition, there may be little to no knowledge about

the real-world application domain of the ML model at the time of training data genera-

tion. Therefore, there is a requirement for general applicability of the dataset, which

will involve domain randomization.

4 Concept

In this chapter, the concept is presented and explained in detail Firstly, the data set

generator to create the CV data set based on a general service interface. Secondly, we

elaborate on a PLM system integration that manages the work process as well as the

parts and components involved. The last section of this chapter deals with a connector

for the communication of the PLM tenant with the dataset generator.

4.1 Dataset Generator

The dataset generator is responsible for generating and creating the CV dataset inde-

pendently from other components. The core of the generator is the render engine, which

is used to create images from a virtual 3D scene. The properties of the scene, such as

background, lighting and shadows, as well as the orientation and position of the objects

in the scene, depend on the parametrization. The choice of these properties plays a de-

cisive role in the performance of the model trained on this data set. If crucial features

of the test environment or of the objects to be recognized are missing, the model is

limited in its ability to correctly interpret the test inputs. However, the development of

a data set adapted to the test environment requires previous domain knowledge that

then influences the test environment setup. To solve this problem, the concept of do-

main randomization is used [10]. Here, the training environment is randomized in as

many properties as possible and feasible. This increases the variance of the training

data and provides a better generalization of the model. In this way, a generally usable

data set can be generated, which can additionally be extended with a lesser amount of

training data with high domain knowledge about the test environment to further in-

crease the performance of the model in said environment. In the Outcomes chapter, the

performance of an object detector trained with a synthetic dataset based on the pre-

sented concept is discussed in more detail, as well as the general usability of such a

dataset.

 The structure of the virtual 3D scene consists of a dome, a hemisphere with a bottom

plate. A High Dynamic Range Image (HDRI) texture is placed on the inside of the

geometric body. This texture contains not only a texture, but also information about the

light properties of the scene. Inside the dome, an arbitrary number of objects, which are

to be identified later in the process, are placed, with random orientation and position.

5

Finally, a virtual camera is placed and aimed at the center of the floor at a random height

inside a defined spectrum. To further increase randomization, the color of the objects

can also be varied. Since the position and orientation of the objects are precisely known

in the virtual space, annotation information, such as bounding boxes or segmentation,

can be automatically generated.

In order to be able to interact with other services, such as PLM systems, the generator

provides a RESTful webservice interface. An endpoint is used to place a request for

data set generation. The jobs are processed according to the ‘First In - First Out’ (FIFO)

principle. A job consists of several settings or parameters, that are stated in Table 1.

The Webhook mail address defines an optional URL. If the dataset generation status

changes, a POST request with the corresponding status is sent as payload to the defined

URL. This way the generator can inform about the start and the completion of the gen-

eration. Also, errors that occur during the generation can be forwarded. The return of

the POST request is a UID for the unique identification of the order.

The finished data record can be downloaded as an archive via a second endpoint. In

addition, the current status of the order can also be queried directly via a third endpoint.

For the last two endpoints, the order UID is required.

4.2 Connector

One challenge in designing the interface of the generator is the very different approach

between current PLM systems regarding interface connectivity. These vary greatly in

their range of functions, such as handling with Webhooks and documents or 3D repre-

sentations. Depending on the system, interaction with the interface of the data set gen-

erator is therefore not possible without restrictions. To solve this problem, a connector

is designed. The connector is a micro service and is located as the middle man of the

communication between the generator and the PLM system. Its task is to override or

adapt the communication, so that a correct and successful data exchange can be guar-

anteed and the use of the full functionality of the PLM system can be ensured. Since

the connectors are adapted to one system at a time, a connector must also be developed

for each supported PLM system. The scope of the connector and thus also the imple-

mentation effort depends on the particular PLM system used.

Table 1. Dataset creation parameters with default, min and max values

Parameter Default Value Min. Value Max. Value

Dataset Size 5 1 1000

Resolution 256 x 256 64 x 64 512 x 512

Scale 1.0 0.01 100.0

Color Uniform Sample

Obj. Min. Occurrences 1 0 Obj. Max. Occurrences

Obj. Max Occurrences 5 Obj. Min. Occurrences

Webhook URL Not set

6

4.3 PLM-System

A PLM system is used to manage product relevant data, in particular the parts to be

detected, including their 3D representations and all other. In addition, the data genera-

tion workflow of the respective item is started and monitored by the PLM system via

the connector. The workflow is linked to a single object, so that a generated data set

always represents exactly one object. The workflow consists of five states and is dis-

played in figure 2.

The initial state is the start state of the workflow and describes that a data generation

job can be created. If a data generation job is created, the availability of the required

3D representation of the selected object as an attachment or document is checked. If

the availability is given, the adapter is informed about the existence of the new order,

which forwards it to the generator. In addition, the connector registers with the genera-

tor via Webhook to be informed about events. In this way, the connector can trigger the

correct transition to the current state in the PLM system after receiving the information.

If the generation is completed, a mail including the download link of the generator is

created and sent to the owner of the respective object in the PLM system.

For the transitions to be triggered, a user with the appropriate rights profile is created

and managed by the connector or used by it.

Fig. 2. Data generation workflow

5 Implementation

The implementation of the data generator is based on the data generation pipeline Ku-

bric [6] from Google Research. It is able to generate a variety of different types of CV

data sets, like segmentation, bounding box or depth estimation. Kubric uses Blender as

the render engine. Also, PyBullet is used as physics engine to simulate physically cor-

rect collisions of objects, if desired. This way, more realistic data can be generated, but

it also requires more complex processing of the objects, due to the generation of a col-

lision mesh, and is therefore not used in this implementation. The objects are instead

randomly placed and oriented in the scene, within an area of 0.3m x 0.3m around the

origin at a height of 0.01m. This ensures that the objects are captured by the camera.

HDRI textures for the background and lighting of the scene are provided by Kubric via

an API from HDRI-Heaven and placed on the inside of the dome. A total of up to five

7

shots are taken per scene. The positions and orientations of the objects vary in each

shot. However, the texture of the background remains the same for each scene.

The data generation takes place in a worker sub-process. The main process hosts the

REST API. Jobs are managed in a FIFO data structure and processed accordingly. The

Kubric process uses the webhook URL to inform if a job finished successfully or with

errors. The IDs of successful jobs are managed in a separate data structure, so that the

API can make these records available for download. Figure 3 shows this process se-

quence graphically. In addition, records older than 24 hours are deleted by a third pro-

cess to optimize the application's memory consumption.

Fig. 3. Sequence Diagram of the dataset generation workflow

For the prototype implementation and evaluation purposes, Autodesk Fusion Man-

age 360 is used as the PLM system. A workspace in Fusion Mange is created, including

a workflow as described in the concept. During the transition from the "Initial state" to

the "Data Generation Requested” state, a script is called that searches for an OBJ file

with the same name as the object in the attached documents in the Workspace. There-

upon a POST request is sent to the connector. This contains the parameters described

in the concept for the data set generation and additionally the WorkspaceID, ItemID

and TransitionsIDs of the PLM system, so that the transitions to be switched can be

identified and triggered by the connector. The comment of a transition is read in by the

script. This way the user is able to change the parameters for the dataset generation.

The ClientID and the Client-Secret of a user with the corresponding rights profile for

switching the transitions are stored in the connector.

6 Outcomes

In order to validate the general usability of a generated data set, a test procedure is

developed and carried out. In total, three reality-based data sets are created. The first

one consisting of 50 photos and the second one consisting of 20 photos, for 2D bound-

ing Box detection, are created with a single object class. The third dataset also contains

50 samples but has five different object classes, instead of just one. The real scene used

has good lighting conditions and a monochrome gray tabletop as background, to mimic

a typical assembly workstation, but without any distracting objects. Light and back-

ground remain unchanged during the acquisition of the datasets. Only the number, ori-

entation and position of the objects differ. The first and third one do not contain any

8

overlapping bounding boxes and have a sparser object arrangement. The second reality-

based data set contains a very tight arrangement of the objects, including overlapping

bounding boxes. All three data sets are used to test three different object detectors

trained with synthetic data. Detector A is trained on a data set created with the help of

the data generator. Accordingly, many properties of the virtual scene are randomized.

This also applies to the color of the objects. Detector B is trained on a synthetic dataset,

which is strongly adapted to the test environment, using Unity3D. In this dataset, the

background, the lighting conditions, and the color of the objects match the real envi-

ronment. Likewise, the objects were placed physically correctly on the background.

Both training datasets only have a single object class. For the third test dataset with

multiple classes, a third detector is trained using a third train dataset with synthetic

images generated by the proposed data generator.

The first two training data sets each consists of 1000 images. The third one consists

of 5000 images. 1000 images for each object class. Currently the data-generator is only

able to handle one object at a time. To be able to train multiple classes, one dataset for

each object is generated. Afterwards the datasets are combined. Figure 4 shows a com-

parison of images from the three synthetic training datasets and the three real test da-

tasets.

Fig. 4. Samples of the synth. training data in the first row (left and middle one generated by the

data-generator, right one with Unity3D) and the real test data in the second row (left sparse,

middle tight and right mul. class dataset)

The time needed to generate a single synthetic dataset for one object class with the

implemented generator takes approximately 45 minutes for 1000 samples. The genera-

tion time is not only depended on the available hardware and the applied resolution, but

it also depends on the images rendered per scene. With five images rendered each scene,

half of the total generation time is conducted for creating the virtual blender environ-

ment. Increasing this value would therefore lower the generation time. All models were

trained for a total of 300 epochs, using the small version of the yolov5 object detection

model [11].

9

Table 2. Test results for all three detectors

Precision is a percentage value that relates the amount of correctly identified objects to

the amount of all objects supposedly found by the model. Recall is the amount of cor-

rectly identified objects relative to the number of objects that should have been de-

tected. Mean Average Precision (mAP) also considers the Intersection of Union of the

bounding boxes. For mAP50, the IoU ranges from 50% to 95%, with a step size of 5%.

As shown in Table 2. detectors A and B achieved near perfect results on the first dataset

and can identify and localize the objects within the image with only a hand full of false

detections. The better performance of model B is expected, due to the training data

adapted to the test environment but is only slightly pronounced. The tests on the second

dataset reveal a huge performance gap between the two detectors. The mean average

performance of detector A is eleven times better than that of detector B.

The third detector, trained and tested on multiple classes does not perform as perfect as

detector A and B on the sparse dataset, but is still able to correctly detect the objects in

most cases.

7 Conclusion

In conclusion, the test procedure validates the usability of the generated data set for

training an object detector for simple structured environments. This includes environ-

ments without distractions, such as objects not to be detected, with optimal lighting

conditions and a rather sparse arrangement of the objects. In such a case, the compari-

son between model A and B shows, that dealing with the effort of adapting the training

dataset to the test domain, or even creating a training dataset manually, is not worth the

effort and can be automated by using domain randomization. While the data-generation

pipeline currently only supports one object per dataset, combining the generated da-

tasets for multiple class problems is a feasible approach for the number of classes tested.

In a more complex environment, the detector A trained on the randomized synthetic

data fails to reliably identify and localize the individual objects, while detector B still

performs reasonably well. Accordingly, the cause of the breakdown in the performance

of detector A is to be found in the randomized synthetic data set and the randomized

properties of the virtual scene. In order to increase the robustness of a detector trained

on a randomized data set, tight arrangements of the objects in the virtual scene can be

Model Dataset Precision Recall mAP50

Detector A sparse 0.980 0.974 0.982

Detector B sparse 1.000 0.993 0.995

Detector A tight 0.211 0.085 0.077

Detector B tight 0.918 0.785 0.851

Detector C mul. classes 0.800 0.937 0.911

10

made. A subdivision of the data set into different groups based on edge cases to be

mapped is conceivable.

The authors were able to demonstrate that an end-to-end process for the generation

of synthetic datasets for CV problems can be fully automated and linked to a PLM

system. The required expertise in the field of machine learning for the creation of such

a dataset is very low and can therefore be well integrated into the PLM environment.

References

1. Mangold S, Steiner C, Friedmann M, Fleischer J (2022) Vision-Based Screw Head Detec-

tion for Automated Disassembly for Remanufacturing. Procedia CIRP 105:1–6.

https://doi.org/10.1016/j.procir.2022.02.001

2. Brogan DP, DiFilippo NM, Jouaneh MK (2021) Deep learning computer vision for robotic

disassembly and servicing applications. Array 12:100094. https://doi.org/10.1016/j.ar-

ray.2021.100094

3. Basamakis FP, Bavelos AC, Dimosthenopoulos D, Papavasileiou A, Makris S (2022) Deep

object detection framework for automated quality inspection in assembly operations. Proce-

dia CIRP 115:166–171. https://doi.org/10.1016/j.procir.2022.10.068

4. Borkman S, Crespi A, Dhakad S, Ganguly S, Hogins J, Jhang Y-C, Kamalzadeh M, Li B,

Leal S, Parisi P, Romero C, Smith W, Thaman A, Warren S, Yadav N (2021) Unity Percep-

tion: Generate Synthetic Data for Computer Vision. http://arxiv.org/pdf/2107.04259v2

5. NVIDIA Omniverse Replicator, https://developer.nvidia.com/nvidia-omniverse-plat-

form/replicator, last accessed 2023/01/25.

6. Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth,

David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Ab-

hijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu

Miao, Derek Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain,

Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing

Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, Andrea

Tagliasacchi (2022) Kubric: a scalable dataset generator

7. Siemens SynthAI, https://synth.ai.sws.siemens.com/, last accessed 2023/01/25.

8. Cabon Y, Murray N, Humenberger M (2020) Virtual KITTI 2.

https://arxiv.org/pdf/2001.10773

9. Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H (2018) Synthetic data aug-

mentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th Interna-

tional Symposium on Biomedical Imaging (ISBI 2018), pp 289–293

10. Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain Randomization

for Transferring Deep Neural Networks from Simulation to the Real World.

https://arxiv.org/pdf/1703.06907

11. Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye

Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, Zeng Yifu, Colin Wong, Ab-

hiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe,

Victor Sonck, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel,

Mrinal Jain (2022) ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmenta-

tion. Zenodo

https://doi.org/10.1016/j.procir.2022.02.001
http://arxiv.org/pdf/2107.04259v2
https://developer.nvidia.com/nvidia-omniverse-platform/replicator
https://developer.nvidia.com/nvidia-omniverse-platform/replicator
https://synth.ai.sws.siemens.com/
https://arxiv.org/pdf/2001.10773
https://arxiv.org/pdf/1703.06907

