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Abstract. In smart manufacturing, data-driven artificial intelligence algorithms 
are becoming increasingly important in improving decision-making by monitor-
ing the control, analysis, and prediction of manufacturing processes in a produc-
tion system. In the textile industry, there is a strong need for smart manufacturing 
technologies because various parameters could affect the quality dynamically. 
This study aims to optimize the parameters of spinning processes by developing 
machine learning algorithms and models which can predict the toughness and 
elasticity of threads. At first, meaningful variables are extracted from the shop 
floor data, and then a defect classification learning model is developed to predict 
defects in advance. In addition, a regression model is implemented for the pre-
diction of toughness and elasticity of the textile. By transitioning from the tradi-
tional trial and error method to the data-based method for the spinning process, 
production costs and time can be reduced through optimal settings of the produc-
tion parameters for the spinning of the desired threads. 

Keywords smart manufacturing, data-driven prediction, textile industry, spin-
ning process. 

1 Introduction 

The 4th Industrial Revolution resulted in industrial changes that have accelerated the 
transition into smart manufacturing. Smart manufacturing (SM) controls and manages 
production, helps the manufacturers with business decisions, and optimizes the manu-
facturing process [1]. A combination of the state-of-the-art technologies, such as Indus-
trial Internet of Things (IoT), big data, cloud computing, and Artificial Intelligence (AI) 
drives the development of highly sophisticated manufacturing intelligence. It plays a 
pivotal role in SM by optimizing the manufacturing process. Recently, there has been 
an increase in applications of anomaly detection technology for predicting system fail-
ure and AI prediction models for quality control in the manufacturing industry.  
The spinning process is a complicated manufacturing operation that involves a complex 
production plan. Fig.1. show an equipment of spinning process, which is the main topic 
of this research. The production plan needs to specify the number of yarns, the spinning 
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process system, and the preparation method, with a variety of options available for all, 
which introduces a lot of complexity into the production planning stage [3]. 
 

 
Figure 1. An equipment of spinning process in textile industry 

 
Moreover, in the case of fiber industry, an appropriate production sequence is planned 
and various production parameters are defined, once the specific category of the final 
product is decided upon [3]. As a labor-intensive industry, on-site decision-making for 
the spinning process, heavily depends on the knowledge and the experience of the 
workers, which gives rise to the following problems.  

i. Since the on-site decision making heavily depends on the experience of the 
workers, it is prone to human error and could potentially lead to increased cost, 
resulting in inconsistencies in quality control from the trial-and-error process. 

ii. However, the defects and quality of the products cannot be examined after each 
sub manufacturing process and can only be examined after the entire process is 
completed. 

To address these problems, this research attempts to predict the quality of the final 
products before the manufacturing process, using AI technology, by proposing a model 
to assist workers with decision making in setting configurations for sub manufacturing 
processes. Deep learning methodologies have been widely used for quality prediction 
tasks. In this research, among the many deep learning methodologies, the long short-
term memory (LSTM) method has been applied to overcome the gradient vanishing 
problem. Section 3 presents the process of forecasting methods. Section 4, applications 
of the proposed methodology in real-life situations are presented. 

2 Research Background 

2.1 Spinning Process 

The spinning process involves a series of sub processes, including polymerizing to cre-
ate high molecular fibers, drying high-molecular polymer chips, melt spinning, forming 
fiber structure, cooling and drawing, and finally the process of taking up, to ultimately 
produce fibers that satisfy the required property values [4]. Fig. 2 illustrates a flowchart 
of a typical spinning process. There is a lack of standardization on the extent to which 
variables affect the property values of the spinning process, so the variables are often 
arbitrarily set, invariably being affected by the worker’s subjectivity. In addition, due 
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to the long production hours, the process can only be executed once a day and defects 
can only be examined after all the processes have been completed, as mentioned earlier. 
 

 
Figure 2. Steps of a Spinning Process 

 
2.2 LSTM: Long Short-Term Memory Network 

In recent years, the neural network (NN) has emerged as a powerful tool in the fields 
of data analysis and time series forecasting [5]. Deep learning technologies have been 
applied in load forecasting, with most depending on the recurrent neural network 
(RNN) or LSTM [6-10]. Farooq et al. [11] have conducted research on artificial neural 
networks (ANNs) for quality characteristics estimation. The ANN was fed with param-
eters that affect the quality and was trained, using a combination of the Marquardt-
Levenberg algorithm and Bayesian regularization. The research revealed that NNs are 
effective in estimating the quality characteristics of yarns. Although RNN is one of the 
more powerful neural networks that can internally maintain input memory, there exist 
the challenges of a long training process and the Levenberg vanishing gradient problem 
[12]. LSTM is one variation of RNN that is widely used to resolve the vanishing gradi-
ent problem [13]. LSTM is a neural network with an architecture to store sequential 
short-term memory, which is later processed with a secondary RNN and is frequently 
used in the field of AI and deep learning [14]. Hu et al. [15], evaluated the prediction 
accuracy of an optimization algorithm, using CNN-LSTM, to develop a prediction 
model that can accurately predict yarn quality parameters. CNN was utilized to opti-
mize the input values, and LSTM was used to figure out the correlation between the 
performance index and the machining parameters and to predict the yarn quality pa-
rameters. The research indicated that the prediction accuracy of CNN-LSTM model is 
heavily influenced by the process parameters and the optimization algorithm. LSTM 
leverages the input gate, output gate, and forget gate in the memory cell of the hidden 
layer to discard insignificant memories, thus retaining only significant ones [16]. The 
vanishing gradient problem is also prevented, considerably improving the performance 
in the processing of long sequence inputs compared to the conventional RNN [6]. 

3 Methodology 

This section discusses the AI algorithm development methodology that predicts the 
strength and elongation of products, manufactured by the spinning process. Fig. 3 illus-
trates each step of the methodology, in detail. 
 
3.1 Data Extraction and Processing 

For this research, the data were provided by the Korea Fiber Research Institute and 
obtained from manufacturing processes. The data consisted of values of the process 
parameters and the measurements of strength and elongation. In total, 50 types of 
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manufacturing data variables, were obtained during the spinning process. Among the 
50 process variables, all the values with fixed constant value were excluded from the 
training of the model. Mathematical-statistical methods were utilized to derive the key 
factors of the process. In general, the t-test is one of the most commonly used mathe-
matical-statistical methods to determine the correlation. However, due to the relatively 
large number of process variables in the spinning process, ANalysis Of VAriance 
(ANOVA) was utilized, which has been proven useful for analyzing multiple experi-
mental groups. ANOVA analyzes the significant effects of a specific variable on the 
target variable when more than two groups exist in a study. ANOVA is an extension of 
the t-test for comparing means of two groups to situations where there are two or more 
levels of a categorical independent variable[17]. In experiments with two or more treat-
ment groups and where the same individuals are subjected to multiple treatments or 
measured at different time points, the independence assumption between samples is 
violated. Therefore, such designs are analyzed using two-way repeated measures 
ANOVA (2-way ANOVA). Researchers in optometric research should carefully con-
sider experimental design aspects and seek statistical advice to ensure the appropriate 
application of ANOVA[18]. To ensure the correct application of ANOVA, Arm-
strong[18] design and match the appropriate analysis that considered about single fac-
tor, multiple factor, sequential treatment, factor combination. In this case, there are var-
ious factors that influence the two response variables (strength and elongation), Multi-
variate ANOVA(MANOVA) is more effective than two-way ANOVA. Fig. 4 describes 
two-way ANOVA and MANOVA in detail. As such, ANOVA was utilized to analyze 
un-fixed variables of the spinning process and ‘n’ number of significant variable data 
were extracted as a result. 
 

 
Figure 3. Methodology for algorithm development 

 
Based on the result of the variance analysis, data with low significance were excluded 
and the remaining key variables were preprocessed in the form of a standard normal 
distribution with mean 0 and variance 1 with anomalies excluded. 
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Figure 4. ANOVA and MANOVA 

 
3.2 Classification Model for Defect Regression Model Implementation  

Removing anomalous data points is the preliminary step in implementing regression 
model. To accurately predict the strength and elongation of yarns, defective yarn data 
were regarded as outliers. After eliminating all data that were classified as outliers using 
a classification model, the remaining data were used for the training of the regression 
model. Several different models, proven to be useful for the classification task, were 
compared to build a defective data filtering model. The four methods used to implement 
the classification model were: eXtreme Gradient Boosting (XGBoost), Multi-Layer 
Perceptron (MLP), Random Forest (RF), and K-Nearest Neighbor (KNN). As this re-
search distinguishes the models for predicting the strength and the elongation of the 
yarn, the classification model for each target value of these variables was accordingly 
chosen to show the best results for each. As the primary evaluation metrics for the clas-
sification model, accuracy, precision, recall, and F1 score were utilized. 
 
3.3 Proposed Algorithm 

This research built a model, using a Keras-based LSTM algorithm, in the Tensorflow 
2.0 and Python 3.9.1 environment. Mean squared error was utilized to calculate the loss 
value for the optimization of the LSTM model and the prediction model was designed 
to predict two types of outputs, strength and elongation. The LSTM method used in the 
research stems from RNN, which is a type of deep learning algorithm, whereby dropout, 
batch size, epoch to store, and pass on the data were set from the previous steps for 
error correction in the hidden layer. The internal hidden layer of the regression predic-
tion model consisted of a dense layer and LSTM layer; the dropout rate, to prevent 
overfitting; the batch size, to determine the input size for error correction; and the 
epoch, to state the total number of training iterations for optimization, which were all 
optimized through a series of trial and errors. Table 1 shows the optimal values for the 
parameter tuning. 
 

Table 1. Parameter tuning values 

Layer Dropout Batch size Epoch 
LSTM, Dense 0.2 16 50 
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Once the training for the newly implemented regression model was complete, the pro-
cess simulation data were fed into the model for examination of the prediction results. 
The process simulation data were derived through a grid search analysis with the unique 
value of each significant variable. 

4 Case Study 

The selected factory for this research uses a melt spinning process and has two produc-
tion lines. Each of the two hoppers consists of two extruders, A and B. Hence, there are 
four tanks: extruder #1 A, extruder #1 B, extruder #2 A, extruder #2 B. The above 
methodology was applied to a real-life site. 
 
4.1 Data Variable Extraction 

As mentioned earlier, there were 50 types of spinning data. After excluding the varia-
bles with fixed values, only 14 variables remained. Table 2 categorizes these 14 varia-
bles, based on the relevant process. 
 

Table 2. Non-fixed variables 

No Process Variable UNIT Value 
1 

Extrusion Process 

Mesh #1 type - #30, #36 

2 Mesh #2 type - #30, #36 

3 Mesh #3 type - #30, #36 

4 Mesh #4 type - #30, #36 

5 Spinbeam Temp ℃ 254, 256, 258, 
260, 262 

6 Mainfold A 
Temp ℃ 254, 256, 258, 

260, 262 
7 Mainfold B 

Temp ℃ 254, 256, 258, 
260, 262 

8 Pack front pres-
sure Mpa 54, 69 

9 Pack end pres-
sure Mpa 54, 69 

1 Winding Process FR speed m/min 4000 ~ 4400 

1 Bundling Process Migration pres-
sure Kg/𝒄𝒄𝒄𝒄𝟐𝟐 1.2, 1.8 

1 Heat Treatment Pro-
cess 

GODET R/O B 
temperature ℃ 90, 100, 105 

1 Drawing Twist Pro-
cess 

GODET R/O A 
SPEED m/min 1000 ~ 3675 

2 GODET R/O B 
SPEED m/min 4105 ~ 4520 
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If the P-value is less than 0.05, it can be said that there is significance. This means that 
the significance level is 95% or higher, thus hinting that the independent variable has 
statistically significant effects on the dependent variable. Table 3 summarizes the de-
grees of freedom, squared sum, mean of squared sum, and p-value. In extracting sig-
nificant variables, a total of eight independent variables remained after filtering. 
MANOVA was utilized to verify the significance of effects of these eight independent 
variables on strength and elongation. As illustrated in Table 4, all variables, except 
drawing ratio, were confirmed as significant. However, because the drawing ratio also 
had an influence on strength and elongation in the two-way ANOVA analysis, it was 
also selected as a significant variable for the regression model. 

 
Table 3. Suggested significant variables 

Variable Value Sum_sq Mean_sq F PR(>F) 
Spinbeam 
Temp 

Strength 27.0066 13.5033 3.0945 4.610038𝑒𝑒−2 
Elongation 1047.7134 523.8567 392.3657 5.912841𝑒𝑒−2 

Mainfold  
temp 

Strength 4.446084 2.2230 0.5094 6.011138𝑒𝑒−1 
Elongation 1047.7134 9.0743 9.0743 1.329997𝑒𝑒−1 

GODET 
R/O A speed 

Strength 180.3400 6.9361 1.5895 3.326776𝑒𝑒−2 
Elongation 1113.1336 32.0665 32.0665 3.487900𝑒𝑒−2 

GODET 
R/O B speed 

Strength 1.0002 0.2500 0.0573 9.938931𝑒𝑒−1 
Elongation 82.9456 15.5314 15.5314 4.909281𝑒𝑒−1 

GODET 
R/O B temp 

Strength 623.6853 47.9757 10.9945 5.06930𝑒𝑒−21 
Elongation 619.3138 35.6817 35.6817 2.52557𝑒𝑒−21 

Drawing ra-
tio 

Strength 21.5961 3.5993 0.8248 5.550908𝑒𝑒−1 
Elongation 25.2373 3.1504 3.1504 4.801639𝑒𝑒−1 

FR speed Strength 1.8033 0.4508 0.1033 9.813244𝑒𝑒−1 
Elongation 15.2008 2.8463 2.8463 2.351307𝑒𝑒−1 

Yarn count Strength 1.7693 0.4423 0.1013 9.819756𝑒𝑒−1 
Elongation 36.756109 6.882529 6.882529 2.081831𝑒𝑒−1 

Residual Strength 2356.3457 4.363603 NaN NaN 
Elongation 720.9667 1.335124 NaN NaN 

 
Table 4. MANOVA analysis 

Variable Pillai's trace 
Value F Value Pr < F 

Spinbeam Temp 0.2009 24.1278 P < 0.001 
Mainfold Temp 0.2009 24.1278 P < 0.001 

GODET R/O speed A 0.2217 25.5734 P < 0.001 
GODET R/O temp A 0.2315 24.8567 P < 0.001 

GODET R/O speed B 0.1153 38.8318 P < 0.001 
GODET R/O temp B 0.1215 41.2002 P < 0.001 

FR speed 0.1163 39.2073 P < 0.001 
Drawing ratio 0.0001 0.0421 P < 0.959 
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4.2 Data Preprocessing 

The data, used in this research were in float type. Based on the variance analysis results, 
insignificant variables and missing values were all removed. To improve the training 
process of the model, scaling techniques of normalization and standardization were uti-
lized. During the preprocessing stage, standardization was set to transform data into a 
Gaussian standard distribution, where the mean is 0 and the variance is 1. 
 
4.3 Classification Model for Defect Removal 

Prior to implementing the regression model, the field datasets were preprocessed to 
remove any defects in strength and elongation, so that the model would be trained only 
on relevant data. To separate defective data, a classification model was built with defect 
set to have strength and elongation of 0 value each. As two-way ANOVA between the 
normal products and the defects aggravates the issue of imbalanced data, the range for 
a product value was divided into 0.3 units. Four classification models:  XGBoost, MLP, 
RF, and KNN, were compared to select the best, the one with the highest accuracy in 
this case. The performance results are displayed in Table 5. For strength and elongation, 
XGBoost and MLP models were selected classification, respectively. 
 

Table 5. Classification performance by suggested model 

 Model Accu-
racy 

Preci-
sion Recall F1-

score 

Strength 

XGBoost 0.9833 0.8333 0.8293 0.8312 
MLP 0.8750 0.5991 0.5851 0.5912 
RF 0.9833 0.8293 0.8333 0.8312 

K-NN 0.8750 0.7646 0.7486 0.7559 

Elonga-
tion 

XGBoost 0.3500 0.3125 0.1896 0.2350 
MLP 0.7167 0.5485 0.5556 0.5482 
RF 0.6333 0.5538 0.5747 0.5508 

K-NN 0.3500 0.2500 0.1896 0.2131 
 

4.4 Implementation of the Regression Model with LSTM 

A quality estimation regression model was first built to predict the quality of the spin-
ning process and then trained on field data. The quality estimation model was imple-
mented based on the LSTM method, and the parameters were tuned to obtain the most 
optimized results for the field data. This method has been proven to show better perfor-
mance in handling the vanishing gradient problem during backpropagation. As such, 
the r2-scores of the regression models, trained with field data for strength and elonga-
tion were 0.7002 and 0.6992, respectively. The results of the training are illustrated in 
the graphs of Fig. 5 which shows that the prediction results follow approximately 70% 
of the actual field data. 
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Figure 5. Strength and elongation prediction 

 
4.5 Process Optimization  

One of the main reasons for implementing the prediction model is to facilitate on-site 
decision making without depending on the worker. The model attempts to set up a pro-
cess that can output the desired values in advance, by predicting the final values of 
strength and elongation even before executing the process. As such, the process simu-
lation data were generated to verify the usefulness of leveraging the prediction model 
as a tool to assist decision making for workers.  
 

 
Figure 6. Predictions of strength and elongation 

The structure of the process simulation data is shown in Fig. 6. The process simulation 
data consist of combinations of unique values of each process variable. Therefore, all 
possible process scenarios that can occur on-site were transformed into input data for-
mat. In total, 238,140 datasets were generated. From these, the defective data values 
were removed for training and 231,050 datasets were used. 
As shown in Fig. 7, measuring the similarity of the density distributions between the 
field dataset and the prediction results indicates that the variance is higher, and the dis-
tribution is more uniform in the simulation datasets than in the field datasets. This could 
be attributed to the fact that all possible scenarios of the process have been considered, 
thus resulting in a generally higher variance. 
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Figure 7. Density distribution 

 
As shown in Fig. 8, because all possible scenarios have been considered for the simu-
lation data, the correlation analysis indicates that the correlation complexity between 
significant variables has been reduced. However, the effects of each variable on 
strength and elongation are still reflected in the field data, implying a similar correla-
tion. 
 

 
Figure 8. Correlation analysis between field and simulation data 

5 Conclusion 

Today, achieving manufacturing productivity and intelligence requires the interopera-
bility and scalability of data-driven technological systems. This has become an im-
portant issue. To optimize products and production processes, it is necessary to estab-
lish a systematic system that spans the entire lifecycle of the product. The purpose of 
this study was to achieve the development of the necessary data for the system and the 
algorithms that constitute the system to achieve systematic system construction 
throughout the entire lifecycle of the product. This paper proposes a methodology to 
optimize the fiber spinning process setting. The first contribution of this study lies in 
utilizing the characteristics of the spinning process data and conducting analysis to 
identify significant data. In textile processes, uncertainty has traditionally been ad-
dressed by relying solely on the expertise of workers or through a trial-and-error ap-
proach to adjust optimal process settings such as temperature and speed. However, this 
paper identifies the variables that impact the yield and quality of textile processes 
through data analysis. This allows for the efficient resolution of problems that were 
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previously dependent on workers' expertise, by leveraging data-driven approaches. Fur-
thermore, analyzing and extracting data that influences quality can aid in the collection 
and accumulation of necessary data for the digital transformation of textile processes, 
contributing to the digitization process. The second contribution of this study involves 
designing various process scenarios to produce yarns with the desired quality. The 
strength and elongation values were then predicted based on the results obtained from 
these scenarios. The deep learning technique in LSTM was proven to be effective in 
analyzing all possible process scenarios that can occur from spinning. The proposed 
model had a prediction accuracy of approximately 70% and 69% for strength and elon-
gation, respectively. In the field, knowledge about process setting variables is primarily 
based on the experience of production. However, the proposed predictive model in this 
paper allows for obtaining knowledge about process settings in unexplored environ-
ments, providing support to workers' decision-making. The algorithm can replace re-
sults that were previously obtained through the knowledge of experienced workers or 
through trial and error. The predictive model can support workers' decision-making by 
providing desired quality process settings that can be achieved, and workers can utilize 
the generated list of settings to configure the process. This way, the predictive model 
assists workers in their decision-making process and enables them to set up the process 
using one of the recommended configurations. Further improvements in future re-
search, can include optimization of the prediction model so that the process would no 
longer need to rely solely on the experience of the workers. In addition, setting initial 
process configurations through predicted process results could help overcome the lim-
itations of continuous manufacturing. 
 
Acknowledgement. This research was supported by the MOTIE(Ministry of Trade, 
Industry and Energy), Korea, under the Virtual Engineering Service Platform program 
(P0022335) supervised by the Korea Institute for Advanced Technology(KIAT). 

6 Reference 

1. Váncza, J., Do Noh, S. & Yoon, HS. Preface for the Special Issue of Green Smart Manufac-
turing. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 545–546 (2020). 
2. Kang, H.S., Lee, J.Y., Choi, S. et al. Smart manufacturing: Past research, present findings, and 
future directions. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 111–128 (2016). 
3. Chao Li, Jun Li, Yafei Li, Lingmin He, Xiaokang Fu, Jingjing Chen, "Fabric Defect Detection 
in Textile Manufacturing: A Survey of the State of the Art", Security and Communication Net-
works, vol. 2021, Article ID 9948808, 13 pages, 2021. 
4. Kim, J. Research Group of Polymer Frontiers, Chemical Engineering and Materials Research 
Infomation Center, Korea (2019) 
5. Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., & Ranzato, M. A.  Learning longer memory 
in recurrent neural networks. arXiv preprint arXiv:1412.7753. (2014). 
6. Hochreiter S. and Schmidhuber J, “Long short-term memory,” Neural Computation, vol. 9, 
no. 8, pp. 1735-1780, Nov. (1997) 



12 

7. Abel, T., Nguyen, P. V., Barad, M. et al., “Genetic demonstration of a role for PKA in the late 
phase of LTP and in hippocampus-based long term memory,” Cell, vol. 88, no. 5, pp. 615-626, 
Mar. (1997)." 
8. Kong, W., Dong, Z. Y., Jia, Y. et al., “Short-term residential load forecasting based on LSTM 
recurrent neural network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 
(2019) 
9. Kong, W., Dong, Z. Y., Hill, D. J., et al., “Short-term residential load forecasting based on 
resident behaviour learning,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1087-
1088, Mar. (2017)  
10. Wang, J., Chen, X., Zhang, F., Chen, F., & Xin, Y. Building load forecasting using deep 
neural network with efficient feature fusion. Journal of Modern Power Systems and Clean En-
ergy, 9(1), 160-169. (2021). 
11. Farooq, A., & Cherif, C. Development of prediction system using artificial neural networks 
for the optimization of spinning process. Fibers and Polymers, 13(2), 253-257.(2012) 
12. Yadav, A., Jha, C. K., & Sharan, A. Optimizing LSTM for time series prediction in Indian 
stock market. Procedia Computer Science, 167, 2091-2100.(2020) 
13. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. Recent advances in recurrent 
neural networks. arXiv preprint arXiv:1801.01078. (2017). 
14. Monner, D., & Reggia, J. A. A generalized LSTM-like training algorithm for second-order 
recurrent neural networks. Neural Networks, 25, 70-83. (2012). 
15. Hu, Z. Prediction Model of Rotor Yarn Quality Based on CNN-LSTM. Journal of Sensors, 
2022. 
16. Gers, F. A., Schmidhuber, J., & Cummins, F. Learning to forget: Continual prediction with 
LSTM. Neural Computation, 12(10), 2451-2471. (2000) 
17. Pak, S. I., & Oh, T. H. (2010). The application of analysis of variance (ANOVA). Journal of 
Veterinary Clinics, 27(1), 71-78. 
18. Armstrong, R. A., Eperjesi, F., & Gilmartin, B. (2002). The application of analysis of variance 
(ANOVA) to different experimental designs in optometry. Ophthalmic and Physiological Optics, 
22(3), 248-256. 


	1 Introduction
	2 Research Background
	2.1 Spinning Process
	2.2 LSTM: Long Short-Term Memory Network

	3 Methodology
	3.1 Data Extraction and Processing
	3.2 Classification Model for Defect Regression Model Implementation
	3.3 Proposed Algorithm

	4 Case Study
	4.1 Data Variable Extraction
	4.2 Data Preprocessing
	4.3 Classification Model for Defect Removal
	4.4 Implementation of the Regression Model with LSTM
	4.5 Process Optimization

	5 Conclusion
	6 Reference

