Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

Please note that all times are shown in the time zone of the conference. The current conference time is: 29th Jan 2022, 05:44:59am CET

Program for LiM 2021
Micro: Ablation, Drilling and Cutting 1
Wednesday, 23/June/2021:
10:00am - 11:00am

Session Chair: Dr. Hans-Joachim Krauß, Bayerisches Laserzentrum GmbH, Germany
Location: Room 3
ICM Ground Floor 125

Show help for 'Increase or decrease the abstract text size'
10:00am - 10:15am

Formation of smooth and flat area for monocrystalline diamond by ns pulsed laser

Yasuhiro Okamoto, Tubasa Okubo, Atsuya Kajitani, Akira Okada

Okayama University, Japan

The combination of ns pulsed laser and acid cleaning can achieve a smooth and flat surface below Ra=0.2 µm for monocrystalline diamond, when laser fluence is controlled around the threshold of removal. Although Gaussian mode is used, shiny and flat surface can be obtained in parallel direction to top surface of workpiece. Therefore, formation method of smooth and flat surface was experimentally investigated by repeating linear grooving, when ns pulsed laser of top-hat mode (1060 nm) was employed. However, subsequent linear grooving to previous one made it difficult to create flat surface with a constant depth, and two-step irradiation method was proposed. Non-removal areas were kept between processed lines in the first step, and the remained area between processed lines of the first step was removed in the second step. The two-step irradiation method was effective to achieve a wide flat-area, and it could improve the controllability of groove depth.

10:15am - 10:30am

Laser structuring of PVD multi-layer coatings for wear reduction

Andreas Stephen1, Bastian Lenz2, Andreas Mehner2, Tim Radel1

1BIAS GmbH, Germany; 2Leibniz-IWT, Germany

Surface texturing is an effective way of improving tribological properties. Its main effect mechanisms are to trap wear particles and store lubricants. One of these technologies is texturing the surface with micro dimples by laser ablation. In this paper, the selective texturing of multi-layer systems, i.e., removing only the top layer by ultra-short pulse laser processing is presented. The removal of the top layer with 1 µm in thickness of the systems (TiN/MoS2:Ti and TiN/a-C:H:Ti/MoS2:Ti:C) is proven by laser confocal microscopy and EDX analysis. The selective laser structuring of the multi-layer systems generated by PVD synthesis developed for tribological applications, among others for the aerospace industry, results in precise structures with depth deviations of less than 0.2 µm without burrs or melt residues. These textures will further on result in reduced wear depending on the structured layer systems and the geometry of the textures regarding dimple diameter and density.

10:30am - 10:45am

Optimized laser cutting processes and system solutions for separation of ultra-thin glass for OLED lighting and display applications

Rene Liebers, Mandy Gebhardt

3D-Micromac AG, Germany

For some years now, laser cutting processes based on filament technology with ultrashort pulse (USP) lasers have been increasingly adopted in industrial applications. The main reasons for this are the good edge quality that can be achieved with simultaneous easy automation and free-form capability. This ability to be automated is of critical importance, especially for applications that target the mass market with their end products. However, the real advantage of the technology comes from its almost unlimited free-form capability. In addition to established manufacturing processes for glasses of medium thickness from 0.2-2 mm, an increasing number of applications with ultra-thin glasses of 30-100 µm are entering the market. These applications also require further development of the process and fab technology.

This presentation covers the possibilities of laser technology based on applications for OLED-based lighting and glass components in the display area.

Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: LiM 2021
Conference Software - ConfTool Pro 2.6.142
© 2001–2022 by Dr. H. Weinreich, Hamburg, Germany