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Abstract 

Physics-informed neural networks (PINNs), which is a powerful approach for solving partial 

differential equations with deep learning, has been recently applied to modeling of electrodynamic 

interaction problems including a relativistic beam in charged particle accelerators. In the present 

study, the transfer learning (TL) is applied to the PINNs based on the total-field (TF) formulation. 

It is shown that TL can accelerate significantly the training process of the TF-PINNs in the 

simulation of the beam impedance of an infinitely long beam pipe of circular cross section. 

1 Introduction 

Physics-informed neural networks (PINNs) [1],[2] is a powerful approach for solving partial 

differential equations (PDEs) via deep learning. The key idea is to embed the PDEs into the loss 

function of a deep neural network (DNN) using automatic differentiation. 

Recently, this approach has been successfully applied to the modeling of electrodynamic 

interaction problems including a relativistic beam in charged particle accelerators [3]-[6]. The 

PINNs based on the total-field (TF) formulation is proposed in [3]-[5]. We shall call this approach 

as TF-PINNs. The concept of transfer learning (TL) [7],[8] was introduced into the PINNs based 

on the scattered field formulation [6], where the basic idea on introducing TL for the simulation of 

the beam impedance [9] is briefly described. However, TL is not yet discussed in the framework 

of TF-PINNs [3]-[5]. 

The purpose of the present study is to apply TL into TF-PINNs [3]. 

2 Application of Transfer Learning to TF-PINNs 

It is well-known in [9] that beam impedances are obtained from electromagnetic fields excited 

by a relativistic charged particle beam moving in an accelerator component in the frequency 

domain. Here the TL [7],[8] is used to accelerate the training process of TF-PINNs [3] in the 

frequency domain. In many cases, a frequency range of interest is specified. The DNNs are trained 

as approximate solutions at the frequency sampling points. In the training process, DNN 

parameters trained at a low frequency point can be used to initialize a DNN at the adjacent higher 

frequency point. If the frequency step is enough small, the TF solution obtained at one frequency 

point can be similar to that of the adjacent higher frequency point. Then, it is expected to reduce 

the number of iterations for the optimization of the corresponding DNN. 

3 Numerical Result 

To show the effect of TL on the TF-PINNs [3], we calculate the beam impedance of a round 

Gaussian charge density with the total chare q=1pC, the Gaussian parameter σr=1mm in the radial 

direction and the relativistic factor γ=100 in infinitely long circular beam pipe with radius R=1cm 

and perfectly electric conductor wall. 



Throughout this study, we adapt a fully connected neural network and the Swish activation 

function for the DNN architecture. We use three hidden layers and 30 neurons per layer. At each 

sampling point, the DNN parameters (weights and bias) are updated to minimize the loss function 

L by using the L-BFGS algorithm, until L get smaller than a threshold 𝜖 = 10−6 or the number of 

iterations get larger than 30,000. 
The left side of Fig.1 shows the number of iterations for training in TF-PINNs with and without 

the TL. From the second sampling frequency point, the number of iterations is decreased at each 

sampling point by using the TL. This result demonstrates that the training process of the TF-PINNs 

can be accelerated with the TL. 

 

 

4 Conclusion 

The TF-PINNs combined with the TL has been developed, and successfully applied to the beam 

impedance of a round Gaussian charge density in an infinitely long circular beam pipe with 

perfectly electric conductor wall. It has been found that the TL is useful for accelerating the training 

processes in TF-PINNs. 
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Figure 1: Effect of Transfer Learning on TF-PINNs in the beam impedance simulation 


