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Abstract 

This paper presents a shape optimization of power inductor using actor-critic approach which 
is one of the reinforcement learning. The performance of the actor-critic (AC) approach is 
compared with that of the genetic algorithm. Comparing to GA, AC is more stably converged to 
an optimal solution with lower computational cost. 

1 Introduction 

Magnetic components such as inductors and transformers play important roles in power 
electronics circuits. Shape optimization of these magnetic components has been successfully 
performed to enhance their efficiency as shown in [1][2]. In this optimization process, the genetic 
algorithm (GA) is widely used to efficiently find optimal solutions. However, GA evaluates 
numerous magnetic components with different design parameters using finite element analysis. 
Therefore, it is required that the optimization time needs to be reduced. 

Recently, reinforcement leaning (RL) [3][4] has gained attention across various fields for the 
ability to efficiently learn and search optimal actions and solutions. For instance, RL techniques 
such as deep-Q-network and normalized advantage function have been successfully applied to 
achieve stable control of buck converter [3]. Despite the successful application in the other fields, 
there are few studies focusing on the shape optimization of the magnetic components. 

In this paper, shape optimization of inductors using RL is proposed. In this approach, actor-
critic (AC) method [4] is employed as an RL method to optimize the power inductor. Finally, we 
compare the performance and computational cost of the AC with those for GA. 

2 Shape optimization of inductor using Actor Critic 

In this study, the coil shape of the power inductor (1.6x0.8x0.8mm3) is optimized as shown in 
Fig. 1. In this inductor, there are 5 design parameters d=[r, l, w, t, n], where r, l, w, t and n are the 
inner radius, length of the major axis, coil width, coil thickness, and number of coils, respectively. 
The objective function is defined as follows:  
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where Ltarget is the target inductance which is set to 240nH in this study, and L(d) and Rdc(d) are 
the inductance and DC resistance with the design parameter d which are computed by FEA. k is a 
normalized parameter, which is set to 1 in this study. 

The AC approach is based on the policy gradient method, in which the policy p(ad|sd) is updated 
with the gradient method to minimize (1), where sd and ad denote the design parameter and action 
direction for sd, respectively. In this study, the policy p(ad|sd) is defined as the normal distribution:  
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where µ, s and q are the mean, standard deviation, and updated parameter, respectively. q is 
iteratively updated by the policy gradient method [4] to find an optimal policy and action. 

3 Optimization results 

The shape optimization of the inductor shown in Fig. 1 was performed by both the GA and AC 
approaches. Table I summarizes the optimization results. You can see that we obtained the 
inductors of 240nH while Rdc of AC solution is better than that of GA solution. Moreover, the 
convergence history of the objective function is plotted in Fig. 2, where the AC approach is quickly 
converged toward the optimal solution.  

To further evaluate the optimization methods, we performed 10 trials with different random 
seeds. Fig. 3 shows the optimization results for the 10 trials where (a) inductance, (b) Rdc and (c) 
the number of FEA required for the convergence to the optimal solution. In both methods, the 
inductance is converged to 240nH across the 10 trials. However, for the resistance, the AC method 
could stably achieve smaller Rdc. For the number of FEA, AC averagely requires 2500 FE 
computations while GA averagely needs 3500 FE computations for convergence to the optimal 
solution. These results show the superior stability and effectiveness of the AC method over GA. 

In the full paper, the proposed method will be applied to other inductors, and we will compare 
them with another optimization approach. 
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Fig. 1 Power inductor for the optimization 

Table I Comparison between actor critic and GA 
 Actor-Critic GA 

seed 5 5 
N 5 5 

length(mm) 0.134 0.143 
radius(mm) 0.157 0.172 

thickness(mm) 0.263 0.255 
width(mm) 0.072 0.070 
𝐿 (nH) 239.9 240.1 
𝑅!" (mΩ) 20.9 21.9 

 
 

 
Fig. 2 Convergence history of the GA and AC     (a). inductance.     (b)  DC resistance (c) # of FE computations 
                  Fig. 3 Comparison of the optimizations for 10 trials 


