Conference Agenda

Session
Mine Hydrogeology
Time:
Wednesday, 14/July/2021:
9:50am - 11:55am

Session Chair: Andrew Clifford Johnstone
Location: Meeting Room 3

Presentations
9:50am - 10:15am

Using Data Science and Machine Learning to Improve Site Hydrogeological Conceptual Models

Tim Robert Ezzy, John Fortuna

Principal Hydrogeologist, Golder Associates, Brisbane, Queensland, Australia

A key goal of many mining groundwater investigations is to identify the main geological features, hydraulic boundaries and connection pathways that will materially influence: a) operations of a project, and b) the natural resources connected to the groundwater system. Exploratory data science techniques such as machine learning provide the experienced mining hydrogeologist opportunities to accelerate understanding of the role of key features within a site hydrogeological conceptual model (HCM) that may affect groundwater management. This has implications for both regulatory approval processes and operational efficiency.



10:15am - 10:40am

Open Pit-Mine Water Management In Equatorial Area

Yogi Pratama, Fahmi Syaifudin, Kris Pranoto

PT KALTIM PRIMA COAL, Indonesia

PT Kaltim Prima Coal, currently the largest open-pit coal mining company in Indonesia, is located in East Kalimantan. A province passed by the equator experiences heavy rainfall throughout the year. Annual average rainfall is recorded at 2,152mm. Controlling water inflow quantity is the most important thing in water management to have decent water quality. Proper design configuration consists of dry dam as flow detention and labyrinth pond for quality adjustment. Water discharge reduction up to 90% in average brings enormous benefit for water management system. Also, the design becomes the most feasible option in post mining.



10:40am - 11:05am

A Set of New Technology and Equipment of Advanced Water Detection and Drainage in Coal Mining Face with Borehole Geophysical Exploration

Qiang Wu1, Yifan Zeng1, Chunsheng Liu2, Honglei Liu1, Shouqiang Liu1, Fangpeng Cui1, Jingchuan Ma1

1China University of Mining and Technology,Beijing,China, China, People's Republic of; 2Wuhan Changsheng Coal Security Technology Co., Ltd., Wuhan 430312, China

In this paper, the latest research and challenges of the technologies and methods for water detection and drainage in coal mining faces in China are analyzed systematically. Through the comparison of two traditional water detection and drainage technologies, underground geophysical exploration technologies and pre-drilling technology, a new set of advanced water detection and drainage method based on borehole geophysical exploration is proposed. The equipment for borehole geophysical exploration technology is developed, including borehole radar advanced water detector and advanced electromagnetic sounder for wireless tomography while drilling.



11:05am - 11:30am

Influence of Coal Mining on Water Environment and Ecology in the Yellow River Basin

Fawang Zhang1, Zhiqiang Zhang1,2,3

1Chinese Academy of Geological Sciences, Beijing 100037, China; 2Hefei University of Technology, Hefei 230009, China; 3Hebei GEO University, Shijiazhuang 050031, China

The upper and middle reaches of the Yellow River are important coal production bases in China, and the current situation of "more coal and less water" has been the main factor restricting its economic development. Based on the coal resources in the upper and middle reaches of the Yellow River and the history of the Yellow River’s dry-up, this article puts forward the main environmental problems faced by the Yellow River. The impact of coal mining on the natural water cycle, water environment, soil erosion, and water-sediment relationship is systematically analysed, and the coordinated development proposal was finally put forward.



11:30am - 11:55am

Incorporating 2D Analytical Results into 3D Graphical and Multidisciplinary Mining Models.

Hannah Redfern, James Catley, Grace Yungwirth

Golder Associates (UK) Ltd

Front end mining studies inform the project development process by assessing key risks and developing an increased understanding of the available site data. 2D analytical models can be appropriate to support hydrogeological assessments during early studies given the level of data available, and the level of confidence required. Incorporating these results into a 3D model can transform a simple methodology into a visual representation which can be integrated with other aspects of multi-disciplinary studies. This methodology incorporates groundwater flow analyses into a 3D surface within standard industry software, Leapfrog Works™, to support an assessment for a proposed open pit mine.