Income Shifting and Management Incentives*

Regina Ortmann† Dirk Schindler‡

August 12, 2019
INCOMPLETE AND PRELIMINARY

Abstract

Existing literature shows that income shifting via transfer pricing within multinational enterprises collides with optimal incentivization of managers in subsidiaries. Against this background, however, internal debt shifting has not been investigated so far. We investigate how both income-shifting channels impact management incentivization when the widely used profit metrics EBIT(DA) is applied as performance measure. Different from most other studies, we focus on endogenous, unobservable managerial effort and the firm’s optimal design of the compensation contract. We find that internal debt shifting does not have a direct effect on management incentives, but has some ambiguous repercussion via its positive effect on investment. In contrast, transfer pricing in royalty payments has a clearly negative incentive effect that is fully neutralized, however, by an higher compensation rate. Hence, the adjustment of the compensation payment one-to-one mirrors the transfer-pricing strategy of the firm. There is no confounding indirect effect from this channel because abusive royalty payments do not affect investment.

Keywords: income shifting, management incentives, debt shifting, transfer pricing, compensation schemes

JEL classification: H25, F23, D82

*This project was started when Regina Ortmann visited the Norwegian Center for Taxation (NoCeT) at the Norwegian School of Economics. She is very thankful to these institutions and their people for their great hospitality. Financial support from NoCeT is gratefully appreciated.

†University of Paderborn and Norwegian Center for Taxation (NoCeT); email: regina.ortmann@unipaderborn.de

‡Erasmus University Rotterdam, Norwegian Center for Taxation (NoCeT) and CESifo; email: Schindler@ese.eur.nl
1 Introduction

At the latest since the call of the G20 countries and the OECD to restrain base erosion and profit shifting (BEPS) and their joint initiative resulting in the BEPS Action Plan (OECD 2013, 2015a), income shifting in multinational enterprises (henceforth MNEs) is high on the agenda of both politicians, researchers and the general public.\(^1\) Research based on firm-level microdata identifies transfer pricing and internal debt shifting as the significant and substantial main mechanisms to avoid corporate taxation, see Heckemeyer and Overesch (2017) for a meta-study.

It is also well-known, however, that MNEs suffer from agency conflicts and moral hazard by local managers in their subsidiaries. In order to align managers’ incentives with the goals of the MNE, the headquarters implement performance-based compensation contracts. Empirical evidence documents that earnings before interest and taxes (EBIT) and earnings before interest, taxes, depreciation, and amortization (EBITDA) are the most frequently used profit metrics to incentivize managers (Meridian 2018; Thompson et al. 2017; PwC 2010). Then, income shifting potentially will interact with the agency conflicts by affecting the profit metrics and creating additional trade-offs. Nevertheless, the major part of the income-shifting literature neglects agency issues related to decentralization. In addition, the existing literature on income shifting under decentralization almost exclusively focuses on transfer pricing and the coordination of intra-firm trade.\(^2\) A small literature analyzes the interplay between income shifting and managerial effort and endogenizes the design of the tax-efficient compensation contract (Elitzur and Mintz 1996; Köthenbürger and Stimmelmayr 2016). In sum, the process behind income shifting under decentralization and endogenous managerial effort largely is part of the “black box behind tax plan planning” (Dyreng and Maydew 2018) still.

In this study, we aim to add to a better understanding of this black box by shedding light on the interplay of income shifting and agency conflicts in a decentralized firm structure. Incorporating an incentivization scheme based on EBIT(DA), we find sharp differences between the main devices for income shifting. Internal debt shifting does not have a direct effect on management incentives, but has some ambiguous repercussion via its positive effect on investment. In particular, the total effect of debt shifting on manager’s performance and the compensation contract depends on the strength of risk avoidance that follow from the separation of ownership and control, and there is a strand of literature that focuses on the optimal resource allocation across subsidiaries, the conflict between maximizing subsidiaries’ profits and the profit of the MNE, and transfer prices for an intermediate good (e.g., Halperin and Srinidhi 1991; Baldenius et al. 2004; Martini et al. 2012). See Hanlon and Heitzman (2010) and Göx and Schiller (2007), respectively, for some overviews.

\(^1\)Recent empirical evidence suggests that MNEs manage to shift 40% of their global profits to tax havens (Tørsløv et al. 2018) and that EU countries lose about EUR 36 billion in corporate tax revenues, equivalent to 0.2% of GDP in the EU (Álvarez-Martínez et al. 2018). The OECD (2017a) reports a total loss from BEPS of USD 100 to 240 billion per annum.

\(^2\)There is some literature based on Slemrod (2004) that incorporates non-tax costs of corporate tax avoidance that follow from the separation of ownership and control, and there is a strand of literature that focuses on the optimal resource allocation across subsidiaries, the conflict between maximizing subsidiaries’ profits and the profit of the MNE, and transfer prices for an intermediate good (e.g., Halperin and Srinidhi 1991; Baldenius et al. 2004; Martini et al. 2012). See Hanlon and Heitzman (2010) and Göx and Schiller (2007), respectively, for some overviews.
aversion of the local manager. In contrast, transfer pricing in royalty payments has a clearly negative incentive effect on managerial effort that is fully neutralized, however, by an adjustment of the compensation payment. Hence, a higher compensation rate one-to-one mirrors the transfer-pricing strategy of the firm so that observable information on incentive contracts might reveal the income shifting of a subsidiary. There is no confounding indirect effect from this channel because abusive royalty payments do not affect investment. The reason is that for optimal behavior, marginal tax savings from transfer pricing are balanced against marginal shifting costs so that effective marginal costs of investment remain unchanged. This balance remains unaffected from principal-agent issues as long as compensation schemes can be adjusted flexibly. Lastly, by analyzing exogenous changes in income-shifting incentives, our results will allow for deducing empirically testable hypotheses.

In order to show these results, we embed a principal-agent model in an income-shifting setting that features transfer pricing in intangibles and internal debt shifting as shifting devices. A local manager has to provide managerial effort as input in order to organize production and manage sales in a subsidiary of the MNE. The headquarters owns a patent on valuable production technology and operates as internal bank. Thus, the headquarters charges royalty payments on the use of the patent and provides the subsidiary with tax-deductible internal debt besides investing equity. To align objectives of the MNE and the local manager, the headquarters implements an executive-compensation scheme. We base our analysis on the widely used incentivization and compensation measure EBIT(DA). The headquarters can shift income via internal debt and abusive transfer pricing. Besides the tax planning, the headquarters decides on the investment budget and the wage bill. The local manager decides on its effort and organizes the production and sales, given the investment budgets and the compensation scheme that the headquarters sets.

Our findings contribute in several ways to the literature on international corporate tax avoidance. First, we directly take the call by Dyreng and Maydew (2018) to better investigate the “black box” of tax avoidance and shed more light on the process of tax planning in decentralized MNEs. We analyze the impact of the most important devices for income shifting on agency conflicts in the subsidiaries, i.e., on the effort choice of local management. We point out that there are strong differences between transfer pricing in royalty payments, i.e., intangibles, and debt shifting when it comes to tax-efficient compensation schemes for managers based on EBIT(DA). This is particularly relevant because EBIT(DA) is the most frequent profit metrics for incentive contracts in corporations.

Second, more specifically, we find that although transfer pricing in intangibles has a negative direct effect on managers’ incentives to exert effort and organize their subsidiaries efficiently, this agency cost of income shifting can easily be neutralized by adjusting the managers’ compensation rate in firms’ EBIT(DA). Using sales-dependent royalty payments for income shifting proportionally reduces profits and profit risk in the productive
subsidiary. Increasing the compensation rate for the variable manager compensation accordingly, to keep the effective compensation rate in absence of income shifting constant, keeps both the EBIT(DA) share and the risk exposure of the manager at their optimal level. Hence, the agency problem is disjunct from tax planning without the need for operating with two books. Thus, our finding generalizes a result in Elitzur and Mintz (1996) who focus on a case with risk-neutral managers and separate transfer prices for tax purposes and internal control.

Third, in contrast to transfer pricing, debt shifting does not have a direct effect on compensation schemes because EBIT(DA) does not respond to interest expenses. Nevertheless, this form of income shifting can affect the agency problem in the MNE. Internal debt reduces effective capital costs and has a positive investment effect, all else equal. Higher investment, however, affects both marginal productivity of managerial effort and the manager’s exposure to risk. This creates an indirect effect on managerial effort that can be positive or negative, depending on the level of risk aversion of the manager and assumptions on complementarity of input factors. This ambiguity triggers an ambiguous effect on compensation schemes and can trigger additional agency costs of income shifting that are absent in case of transfer pricing in intangibles. The economics literature has acknowledged the positive investment effect of debt shifting (e.g., Hong and Smart 2010; Schindler and Schjelderup 2012), but to the best of our knowledge, the indirect agency costs of internal debt shifting have not been analyzed in the literature to date.

Fourth, our results speak to a couple of issues raised in Hanlon and Heitzman (2010). These authors ask how MNEs, engaging in transfer pricing, can balance performance measurement in their subsidiaries and the tax objectives on MNE level and how, if at all, tax-driven transfer pricing affects real investment (section 4.4.1). Furthermore, they call for more theory on accounting and tax research providing a framework to guide research efforts (p. 168f). Our results suggest that there is no conflict between performance measurement and tax objectives as long as MNEs can flexibly adjust the variable compensation component of local managers. Doing so is possible because transfer pricing in royalty payments does not affect marginal investment incentives, i.e., different from internal debt, there is no indirect repercussion effect. This generalizes findings under centralized decision making that show that tax-induced transfer pricing in intangibles does not affect real investment and triggers pure shifting of paper profits (Juranek et al. 2018, 2019). In general, our model offers the basis for a framework that allows for analyzing income shifting in a principal-agent setting. In contrast to previous agency models on tax avoidance (e.g., Slemrod 2004; Crocker and Slemrod 2005), our framework models different income-shifting channels in detail and highlights their different implications.

3In reality, such flexibility does not imply that existing manager contracts can be changed in response to tax rate changes. But the MNEs will anticipate their transfer pricing when signing contracts with new managers and will implement changes in the statutory compensation rate whenever an existing contract of a manager gets prolonged.
Lastly, our sensitivity analysis provides empirically testable hypotheses on the impact of tax incentives on income shifting and the structure of executive compensation. These results can inform tax legislators on how income-shifting behavior of MNEs is linked to observable management compensation schemes and enable tax auditors to deduce targeted audit patterns. For example, the transfer-pricing strategy in intangibles is perfectly mirrored in the compensation rate of managers. Our results confirm the suspicion that subsidiaries that consistently report low EBIT(DA) over several years, but provide their managers with high compensation rates in their profit metrics, operate a tax-aggressive pricing scheme for the use of their intellectual property (e.g., patents on technology or trade marks). Such constellations should trigger red flags for the tax authorities.

The paper proceeds as follows. Some related literature is reviewed in Section 2. In Section 3, we introduce the basic model. We derive the optimal behavior of the firm and its manager in Section 4. For doing so, we first determine the optimal decisions of the manager and, building on those, we characterize the optimal choices, including the compensation contract, of the headquarters. In Section 5, we analyze the sensitivity of the outcomes, particularly of the optimal incentive contract, with respect to changes in the incentives to do transfer pricing and internal debt shifting. Section 6 concludes.

2 Related Literature

Recent macro studies that use aggregate data show that the revenue losses from income shifting are significant and lead to a sizable loss for high-tax countries. The annual revenue losses are estimated between 0.2% and 1.0% of GDP in developed countries (Crivelli et al. 2015; Álvarez-Martínez et al. 2018) or USD 100 to 240 billion in absolute numbers (OECD 2017a). As main shifting mechanisms, transfer pricing and internal debt shifting are discussed in the literature. The standard modeling for transfer pricing assumes convex shifting costs so that the optimal transfer price is determined by the marginal tax savings (i.e., the tax rate differential) from shifting income from a high-tax to a low-tax country equal to marginal shifting costs. See, e.g., Haulefr and Schjelderup (2000), Gresik (2001), and Grubert (2003) for basic models. Huizinga and Laeven (2008) stress the importance of weighted tax differentials when income is shifted via intra-firm trade of intermediate goods across all subsidiaries. Empirically, transfer pricing is found to be significant and substantial (e.g., Clausing 2003; Davies et al. 2018).

The importance of internal debt shifting was first documented empirically by Collins and Shackelford (1997) and the analysis became formalized in Mintz and Smart (2004). The headquarters of an MNE places equity in its lowest-taxed subsidiary. That serves as internal debt and lends the money to all other subsidiaries. That way, deductible interest expense in the borrowing subsidiaries overcompensates tax payments on interest income in the internal bank. Similarly to transfer pricing, the resulting tax differential
measures the marginal tax shield and optimal internal leverage balances these tax savings against marginal costs of internal debt shifting. Also this mechanism finds strong empirical support (e.g., Dharmapala and Riedel 2004; Büttner and Wamser 2013).

Heckemeyer and Overesch (2017) conduct a meta-study on 27 profit-shifting studies and identify a semi elasticity of profits with respect to international tax differentials of about -0.8. They find the effect of transfer pricing, including licensing, to be four times stronger than the one from debt shifting (-0.65 to -0.15). Both Heckemeyer and Overesch (2017) and the OECD (2015b) stress that transfer pricing in intangibles is particularly popular because it is very difficult to determine the arm’s-length price for the use of intellectual property because market parallels are lacking.

Importantly, most of the income-shifting literature focuses on centralized decision making in MNEs and neglects issues related to decentralization. This is particularly true for the economics literature. There is some literature, however, that incorporates decentralized decision making and agency issues into models of income shifting. The majority of these papers focuses on the optimal allocation of resources between upstream and downstream subsidiaries, the bargaining of transfer prices between these subsidiaries and the interplay with tax incentives, see, e.g., Halperin and Srinidhi (1991), Baldenius et al. (2004), and Martini et al. (2012). Göx and Schiller (2007, section 6) provide an overview on relevant effects.

Most relevant for our study, however, are the papers that incorporate decision making by local manager and incentive schemes installed by the MNE to align the goals of the MNE and the local managers. Li and Balachandran (1996) show that corporate taxes state a decisive factor in determining transfer prices which are charged by the HQ to their foreign divisions. As each division manager, compensated based upon the pre-tax division profits, reveals true production costs to the HQ and thereby constrains the bandwidth for transfer prices, the MNE will not shift all profits to the low-tax jurisdiction. The optimal transfer pricing system should balance the tax effects as well as the incentive effects on the transfer pricing problem. In contrast, Choi and Day (1998) look at a setting in which incentive contracts for divisional managers depend on the division’s after-tax profits. They analyze the trade-off between tax-induced transfer prices to shift income and the reduction in managers’ effort triggered by tax avoidance. Under continuous effort and divisional performance measures, these authors find that the effort exerted by the sales division managers decreases with the corporate tax differential between tax jurisdictions. Based on a two-book-system, Smith (2002) shows that transfer prices affect after-tax income both by influencing the manager’s production decisions ex ante and by allocating income ex post across tax jurisdictions. If the ex-ante incentive role dominates the ex-post

4Notable exceptions are Schjelderup and Søgard (1997) and Nielsen et al. (2008). They analyze the trade-off between tax-induced transfer pricing and a strategic effect from inducing more aggressive behavior in subsidiaries under oligopolistic competition. The latter authors also derive the optimal allocation of decision rights.
tax role, the firm increases the transfer price received by the subsidiary even if the tax rate of the subsidiary increases.

Closest related to our study are Elitzur and Mintz (1996). They document that income shifting has no impact on the manager’s equilibrium effort level as the principal compensates the manager for any tax-induced utility reductions. They investigate, however, a special case where the firm effectively uses two books and where local managers are risk neutral. In their setting the tax rate acts similarly to a cost markup for the production division. Similarly, Köthenbürger and Stimmelmayr (2016) analyze agency costs from moral hazard by local managers in relation to income shifting by the MNE. The latter authors compare the different allocations of decisions rights, i.e., the level of centralization, under different forms of transfer-price regulation. One surprising result is that a centralized decision making can align the agency problem and tax planning if managerial effort in the downstream subsidiary is sufficiently more important than the one in the upstream subsidiary.

Importantly, none of these papers models the impact of internal debt shifting on the agency costs. The paper which comes closest to one core aspect of our paper is Eisdorfer et al. (2013). They examine how the similarity between the executive compensation leverage ratio and the firm leverage ratio affects the quality of the firm’s investment decisions. A larger leverage gap (i.e., a bigger difference between these two ratios) leads to more investment distortions. Managers with more debt-like compensation components tend to underinvest, whereas managers with larger equity-based compensation engage more in overinvestment. Contrary to our study, however, they do not take into account managerial effort but instead focus on managerial investment decisions. Moreover, the aspect of debt as an income-shifting channel is not part of their analysis.

3 The Model

We assume a risk-neutral MNE that consists of a holding company as headquarters (henceforth HQ) in a low-tax country h and a fully-owned, productive subsidiary in country s.\footnote{Following Ethier (1986) and Tirole (1988), the main body of literature on MNEs assumes them to be risk neutral.} The corporate tax rate in country h, τ_h, is lower than the one in country s, τ_s, so that $\tau_s - \tau_h > 0$. The HQ serves as a financial center and provides the productive subsidiary with real capital K. Capital is either provided as equity E or as internal debt D. As a simplification, we assume that external capital markets are not available. Furthermore, the HQ owns the patent for a specific production technology \bar{X} that is used in the subsidiary.

The subsidiary is run by a local manager and uses capital K, labor input L, and the technology \bar{X} to produce an output good under decreasing returns to scale. In addition, the subsidiary requires effort e from the manager. This effort can be interpreted either...
as sales and marketing activities of the manager in the local market, coordination of the production process, or supervision of the workforce. Effort has a positive, but decreasing marginal productivity and without any effort, sales revenue will drop to zero.

Total sales revenue S is stochastic and depends on an idiosyncratic shock ε that is normally distributed with zero expected value and a variance σ^2. Hence, $\varepsilon \sim N(0, \sigma^2)$. The properties of the sales function can be summarized as

$$\tilde{S} = (1 + \varepsilon)S(K, L, e; \bar{X})$$

with $S_a, -S_{aa} > 0 \forall a = K, L, e$ and $S(K, L, 0; \bar{X}) = 0$. (1)

where terms with a '\sim' indicate stochastic variables and where \bar{X} is a fixed asset that we will suppress in the following.

For the use of the intellectual property, the HQ receives a royalty payment TP that is tax deductible in the productive subsidiary in country s. Empirical evidence documents that most royalty payments are based on sales revenues or a two-part tariff with a lump-sum payment and a sales-dependent component. Therefore, we model the royalty payment as the fraction $p_x + tp$ of sales revenues. The true arm’s-length price, mirroring actual value, is p_X while the deviation (or surcharge) tp allows for shifting income. In sum, total royalty payments are stochastic and given by

$$\tilde{TP} = (p_x + tp)(1 + \varepsilon)S(K, L, e).$$

(2)

As the true arm’s-length price cannot be perfectly observed by tax authorities and because there is some ambiguity in transfer-price regulation, the MNE can decide to deviate from the arm’s-length price in order to shift profits to the low-tax country. Such a deviation, however, causes convex shifting costs (e.g., Haufler and Schjelderup 2000; Grubert 2003). These costs can be expected fines for violating (or ignoring) regulation, but also include incurring valuable managerial time, hiring lawyers and accountants to conceal the true arm’s-length price, and/or working around various regulations such as controlled-foreign-company (CFC) rules. For royalty payments, Juranek et al. (2018) show that the best way to capture the implications of OECD standard transfer pricing methods on the costs of shifting income is to define the shifting costs over the deviation from the arm’s-length payment. In the following, we assume the OECD standard methods to apply and

6See San Martín and Saracho (2010) for an overview and discussion of empirical evidence on royalty payments.

7Randolph et al. (2005), 319, provide evidence that transfer pricing also causes costs from negative effects of income shifting on an affiliate’s financial accounts (e.g., current net income and the rate of return). An example is reduced credit-worthiness of the affiliate. Such effects would add to our shifting costs if we extend the model to incorporate external debt.

8According to the OECD (2015c, 2017b), the standard methods are Controlled Unrelated Price Method, Transactional Net Margin Method and Cost Plus Method. For profit-allocation methods such as the Transactional Profit Split Method, however, the specification does not work well. See Juranek et al. (2018) for details.
define the shifting costs of transfer pricing as a U-shaped function

\[C^P = C^P(TP^a) = C^P(tp(1 + \varepsilon)S(K, L, e)) \]

with \(C^P(0) = 0, \frac{\partial C^P}{\partial TP^a} \cdot TP^a > 0 \) and \(\frac{\partial^2 C^P}{\partial (TP^a)^2} > 0 \) and where \(TP^a = tp(1 + \varepsilon)S(K, L, e) \) captures the abusive, tax-induced part of the royalty payment.

Following the main body of the debt-shifting literature, we abstract from risk so that user costs of capital for both equity \(E \) and internal debt \(D \) are equal to the normal world-market interest rate \(r \). As there are no external capital markets, the subsidiary cannot acquire financial means from any other source. Furthermore, we assume the tax-exemption principle to be in place so that the dividends on the equity part of the capital investment \(K \) are tax-exempt at the parent level (i.e., the HQ).\(^9\) For the debt portion, we define the (internal) leverage ratio as \(b = D/K \). All interest expenses on internal debt, i.e., \(rbK \), are tax deductible in the affiliate, but trigger taxable income in the HQ. In contrast, following most OECD tax codes, costs of equity are not deductible in the corporate tax base.

Effectively, internal debt is re-labeled equity. Indeed, it features many properties of equity, the main difference being that its interest costs are deductible. Because of this tax feature, the finance literature perceives internal debt as ‘tax-preferred equity’ (e.g., Chowdhry and Coval 1998, 87; Gertner et al. 1994), and its related costs are different from agency costs (and benefits) of external debt.

We restrict our analysis to transfer pricing in intangibles and internal debt shifting. Consequently, all internal debt is traded at the world-market interest rate, and there is no mispricing of internal interest rates.\(^10\) In order to reap the tax savings of internal debt, the MNE needs to incur shifting costs \(C^I \) to conceal debt shifting resulting in thin capitalization for over-levered affiliates. Similar to transfer pricing, the motivation for these costs rests on various expenses related to circumventing thin capitalization rules, CFC rules or related regulation. Following the standard in the literature (e.g., Mintz and Smart 2004; Schindler and Schjelderup 2012), these costs are increasing above average with the leverage ratio \(b \), but assumed to be proportional to the amount of capital employed. Firms that do not host internal debt do not face shifting costs either. Formally, we summarize the shifting costs of internal debt as

\[C^I = C^I(b) \quad \text{with} \quad \frac{\partial C^I}{\partial b} > 0, \quad \frac{\partial^2 C^I}{\partial b^2} > 0 \quad \text{and} \quad C^I(0) = 0, \quad \frac{\partial C^I}{\partial b(0)} = 0. \]

\(^9\)Note that since the U.S. tax reform 2018, i.e., the ‘Tax Cut and Jobs Act’, only few countries are left that do not use the exemption method for inter-corporate dividends. In the OECD, only Chile, Israel, and Mexico stick with a world-wide tax system.

\(^10\)Schindler and Schjelderup (2016) embed transfer pricing in interest rates into a model of external debt and internal debt shifting. They show that the main inferences on income shifting from standard models do not change. The interaction matters for reactions on tax-rate and regulation changes and is driven by the shape of the shifting-cost function.
Finally, labor is hired at the wage rate w, and the manager exerts effort. Without any effort from the manager, $e = 0$, there will be no sales. The manager is required to organize and observe production in the foreign subsidiary and has to provide marketing and sales services in the local market. Managerial effort is non-verifiable and not observable for the HQ; however, and the MNE cannot differentiate between effort of the manager and the random sales shock. As effort is costly for the manager, the MNE needs to incentivize and compensate the effort. Therefore, the MNE implements a performance-based contract for the manager.

We follow a large body of literature that rests on Holmström and Milgrom (1987), assumes a risk-averse manager with constant absolute risk aversion, and a linear, two-part compensation scheme (see, e.g., Elitzur and Mintz 1996; Köthenbürger and Stimmelmayr 2016). The manager derives expected utility from consuming its income and has utility costs $c(e)$ from providing effort. Its expected utility function is given by

$$EU = E[U(W)] - c(e),$$

where W denotes manager’s income. We assume that the value of the manager’s outside option is normalized to zero so that the compensation contract will satisfy $EU = 0$.

Whereas most literature bases the performance component on (before- or after-tax) profits, we deviate in that respect and define the compensation scheme over earnings before interest and taxes (EBIT).\(^{11}\) Indeed, EBIT and EBITDA are the dominant performance measures for executive compensation.

For North-America, Meridian (2018) recently conducted a survey study based on responses from 127 companies with a median market value of USD 5,708 million, active across a diverse range of industries. Allowing for multiple answers, the study documents that EBIT or EBITDA are the most prominent annual incentive performance metrics, used in 57% of the responding firms. In addition, sales or revenues are used by 42% of the respondents for that purpose. Looking also at the long-term performance measures, Meridian (2018) reports that 24% of the respondents use EBIT or EBITDA there, and 18% rely on sales and revenues. In the universe of incentive mechanisms, EBIT(DA) and sales turn out to be the most widely used performance measures in North-American public companies.\(^{12}\) Notable examples of U.S. firms that adopt EBITDA as performance mea-

\(^{11}\)As we neglect depreciations in our model, there is no difference between EBIT and earnings before interest, taxes, depreciation and amortization (EBITDA) in our model. Note as well that other papers such as Li and Balachandran (1996), Elitzur and Mintz (1996), and Smith (2002) do not model capital costs explicitly so that their profit measures effectively collapse to EBIT as well. But, these papers cannot analyze internal debt shifting and its interplay with managerial incentives. Note that all papers on executive compensation use profit measures before the compensation payment to the manager, and so will we.

\(^{12}\)The result on long-term incentivization corresponds to findings in a similar survey by Thompson et al. (2017), focusing on financial executives. There, 18% of public companies use EBIT(DA) as long-term incentive compensation. It is the measure with the highest frequency. This study is based on 100 large
sures in determining executive bonus include Time Warner Inc. and Flower Foods (Liu and Tsang 2014). For German-speaking countries, PwC (2010) surveyed 70 respondents of German, Austrian and Swiss companies of which 81% were listed. Again allowing for multiple answers, the study reports that about 50% of the firms rely on EBIT, about 30% use EBITDA, and about 50% of the respondents rely on sales as measure to compensate their executives.

Therefore, we assume that the manager in subsidiary \(s \) receives a fixed payment \(\alpha \) plus a share \(0 \leq \beta \leq 1 \) of the subsidiary’s EBIT.\(^{13}\) Hence, manager income is given by

\[
W = \alpha + \beta \cdot \tilde{EBIT} = \alpha + \beta \left[(1 + \varepsilon)S(K, L, e) - T \tilde{P} - wL \right],
\](6)

where we defined EBIT before manager compensation.

Utilizing manager’s income (6) and the assumption of a constant absolute risk aversion in the utility function (5), we display the manager’s objective function as

\[
EU = \alpha + \beta \left[(1 - p_x - tp)S(K, L, e) - wL \right] - \beta^2(1 - p_x - tp)^2S(K, L, e)^2d\sigma^2 - c(e),
\](7)

where \(d \) is a measure for the absolute risk aversion of the manager and \(\sigma^2 \) denotes the variance of the Normally distributed sales shock.

The decision structure in the MNE is as follows. Traditionally, decisions on income shifting are allocated to the HQ (e.g., Choi and Day 1998; Elitzur and Mintz 1996). With respect to transfer pricing, a local manager does not have any incentive to shift profits to a low-tax country and reduce profitability in its own affiliate. In contrast, a local manager would choose an excessive internal leverage because internal debt shifting allocates all tax savings to the borrowing subsidiaries and externalizes tax payments on shifted income to the internal bank. In other words, a local manager does not acknowledge all benefits from transfer pricing and neglects substantial costs from internal debt shifting. Consequently, it will be the HQ that determines the abusive transfer price \(tp \) and internal leverage \(b \). In doing so, the HQ runs a one-book system where the transfer prices for tax reporting coincide with the transfer prices in the internal book used for management control and incentivization.\(^{14}\)

Furthermore, in most cases, the HQ specifies a capital budget that can be expensed.

\(^{13}\)Note that compensation systems based on sales revenues are a subset of our approach. When effects working via labor demand are eliminated, all results to come will apply to a system that is based on sales revenues as well.

\(^{14}\)In principle, MNEs can insulate their income shifting from principle-agent problems by operating with two books (e.g., Smith 2002; Baldenius et al. 2004; Nielsen and Raimondos-Møller 2012). One book contains the transfer prices reported to the tax authorities, the other book is for internal use and the coordination between the HQ and the subsidiaries. Running two books can, however, create substantial costs, for example in justifying differences in transfer prices both internally and towards tax authorities. The empirical evidence is mixed. It seems that most firms operate with one book only, whereas large, tax-aggressive firms rather opt for two books; see Göx and Schiller (2007, 692) and Bauer et al. (2018).
For simplicity, we capture this by assuming that the HQ decides on the amount of capital investment K in the subsidiary. Importantly, with an incentive system written on EBIT(DA), a local manager would overinvest and maximize sales instead of profits because capital costs do not enter its compensation scheme. In addition, we will assume that the HQ decides on the budget for wage expenditure, i.e., effectively decides on labor demand L in the subsidiary.15 We will discuss the implications of the latter assumption in the next section.

The manager still has several functions and plays a crucial role in the subsidiary which does not have any sales without managerial effort, i.e, $S(K, L, e) = 0$ if $e = 0$. The manager is fully responsible for the entire sales division, has to provide information on the local market and organize the local supply and distribution chains. Furthermore, it has to organize and supervise the production process, decide on the use of the capital units and manage the labor force (given a total wage bill wL). All these tasks are summarized in managerial effort e.

As the HQ decides on all income shifting, we allocate all costs related to income shifting to the HQ as well. Whether these costs should be fully tax deductible is unclear because part of the costs are expected fines for violation of the respective regulation. For simplicity and to save notation, we will assume that these costs are not tax deductible. This assumption will not affect the results to come. Besides shifting costs C^P and C^I, the HQ also carries some fixed costs C_f that result from a former R&D process to establish the intellectual property and from costs related to maintaining the patent on this intangible. The global after-tax profit of the MNE can be summarized as the sum over expected after-tax profits of the HQ and the subsidiary, that is

$$\Pi = E[\pi_s] + E[\pi_h] = (1 - \tau_s)[S(K, L, e) - TP - wL - W] - [r - \tau_s rb]K$$

$$+ (1 - \tau_h)TP + (1 - \tau_h)rbK - rD - C^I(b)K - C^P(TP^a) - (1 - \tau_h)C_f$$

$$= (1 - \tau_s)(1 - \beta)((1 - p_x - tp)S(K, L, e) - wL) - (1 - \tau_s)\alpha - [r - (\tau_s - \tau_h)rb + C^I(b)]K$$

$$+ (1 - \tau_h)(p_x + tp)S(K, L, e) - E[C^P((p_x + tp)(1 + \varepsilon)S(K, L, e))] - (1 - \tau_h)C_f,$$

(8)

where $D = bK$. The first line shows expected profits in the subsidiary as the after-tax value of sales minus transfer payments, the wage bill and the manager compensation, minus the after-tax interest costs on capital employed. The second line reports profits of the headquarters as the after-tax value of received license payments plus the after-tax interest income after user costs of capital (rD) minus shifting costs for internal debt and transfer pricing and the fixed costs after tax.

15In case of compensation systems based on sales revenues, managers cannot decide on the wage bill. Otherwise a problem similar to EBIT(DA) and capital investment emerges: managers will maximize revenues and neglect labor costs.
4 Firm Behavior

In the first stage, the HQ chooses the investment budgets, the transfer price and internal leverage, and the payment details for the manager. Thereby, the HQ will anticipate manager’s response in effort choice. On the second stage, the manager will choose its effort observing the details of its compensation contract, the income-shifting choices and the capital and labor budgets set by the HQ. We will solve firm behavior by backward induction.

4.1 The Manager’s Decision

The manager will work in the subsidiary and exert costly effort whenever doing so delivers at least as much utility as its outside option that is set equal to $\bar{U} = 0$. If that participation constraint is fulfilled, the manager chooses effort by maximizing its expected utility function (7) so that its maximization problem becomes

$$\max_e EU = \alpha + \beta^* \left[S(K, L, e) - \frac{w}{1 - p_x - tp} - (\beta^*)^2 S(K, L, e)^2 d\sigma^2 - c(e), \right. \tag{9}$$

where we have denoted $\beta^* = \beta(1 - p_x - tp)$ as the manager’s effective compensation rate in sales revenue. The first-order condition can be rearranged to

$$\left[\beta^* - 2(\beta^*)^2 S(K, L, e) d\sigma^2 \right] S_e = c'(e), \tag{10}$$

where $S_e = \frac{\partial S}{\partial e}$ denotes the partial derivative of the sales function.

The manager chooses effort by balancing the marginal risk-adjusted return on effort with its marginal effort costs $c'(e)$. Assuming effort and the other inputs to be complements, i.e., $S_{ek}, S_{eL} > 0$, the manager’s effort increases with capital and labor in the subsidiary as long as the risk aversion is sufficiently low. More inputs render exerting effort more productive, but the higher production also magnifies the exposure to the sales shock.\footnote{16} Formally, we find from implicitly differentiating condition (10)

$$\frac{\partial e}{\partial j} = -\frac{[\beta^* - 2(\beta^*)^2 S(K, L, e) d\sigma^2] S_{ej} - 2(\beta^*)^2 d\sigma^2 S_e S_j}{[\beta^* - 2(\beta^*)^2 S(K, L, e) d\sigma^2] S_{ee} - 2(\beta^*)^2 d\sigma^2 S_e^2 - c''(e)} \quad j = K, L \tag{11}$$

where the denominator as second-order condition for effort choice is always negative.

Importantly, income shifting does not affect the manager’s decision as long as the HQ keeps the effective compensation rate β^* constant, that is, $\frac{\partial e}{\partial b} = 0$ and $\frac{\partial e}{\partial tp|\beta^* = \text{const.}} = 0$. As the manager is incentivized via EBIT, internal debt shifting does not affect its compensation at all. Consequently, the HQ can shift income by internal debt without...
any direct effect on the agency conflict in the subsidiary and without the need to adjust the compensation rate. Furthermore, transfer pricing does not affect managerial effort either as long as the HQ increases the compensation rate \(\beta \) in order to compensate the manager for shifted profits, i.e., to keep \(\beta^* \) constant. The latter finding also generalizes the result of a compensating increase in the compensation rate in Elitzur and Mintz (1996) to a setting with risk-averse manager and a one-book system. An increase in the royalty rate \(tp \) proportionally reduces revenues and their variance. This reduction in risk exposure compensates for the higher risk that the manager carries, all else equal, when its compensation rate \(\beta \) increases.

However, the manager’s maximization problem (9) also highlights the limiting case for the separability of income shifting and agency conflicts. If the manager does not only organize and supervise production, but receives decision rights on how much workforce to hire, transfer pricing will have a direct effect on management decisions. Assume for now, that the manager also chooses labor demand \(L \). Then, there is a second first-order condition that reads

\[
[1 - 2\beta^* S(K, L, e)\sigma^2]S_L = \frac{w}{1 - p_x - tp},
\]

balancing manager’s marginal expected return to labor with effective wage costs. Importantly, the royalty payment participates in the return on labor, but does not share the wage bill. Hence, from view point of the manager, the royalty payment acts like an increase of the wage rate, rendering labor less profitable. This implies that tax-induced transfer pricing will always distort labor demand because a higher \(tp \) is equivalent to an increase in the wage rate of workers. Thus, while there still is no direct effect on managerial effort, the conflict between income shifting and management incentives reenters via a distortion in labor demand. A higher compensation rate \(\beta^* \) cannot compensate this effect. In contrast, the choice of internal leverage does not have any effect on labor demand so that internal debt shifting and agency conflicts are still independent of each other, for given investment levels.

In the following, we will stick to our original assumption that the subsidiary’s manager organizes and supervises production, i.e., determines the optimal labor structure, whereas the HQ decides on the size of the workforce, i.e., the wage bill.

4.2 The Choices by the Headquarters

The HQ knows that the manager will work whenever the compensation contract results in utility that is at least as high as the value of the outside option. Consequently, the HQ will set the fixed payment \(\alpha \) such that the participation constraint just binds, i.e., so
that \(EU = \bar{U} = 0 \) holds. From this follows that the fixed payment will be equal to

\[
\alpha = -\beta[(1 - p_x - tp)S(K, L, e) - wL] + \beta^2(1 - p_x - tp)^2S(K, L, e)^2d\sigma^2 + c(e). \tag{13}
\]

Using condition (13) in the profit function (8) of the MNE and utilizing that the HQ actually will choose the effective compensation rate \(\beta^* = \beta(1 - p_x - tp) \) and the surcharge \(tp \) on royalty payments, instead of the compensation rate \(\beta \) and the transfer price \(tp \), we can rewrite the expected profits of the MNE as profit-maximization problem

\[
\max_{b, tp, \beta^*, L, K} \Pi = (1 - \tau_s) \left[S(K, L, e) - wL - (\beta^*)^2S(K, L, e)^2d\sigma^2 - c(e) \right] \\
+ (\tau_s - \tau_h)(p_x + tp)S(K, L, e) - E\left[C^P(tp(1 + \varepsilon)S(K, L, e)) \right] \\
- [r - (\tau_s - \tau_h)rb + C^I(b)]K - (1 - \tau_h)C_f. \tag{14}
\]

The corresponding first-order conditions are

\[
- \left[-(\tau_s - \tau_h)r + \frac{\partial C^I}{\partial b} \right] K = 0, \tag{15}
\]

\[
(\tau_s - \tau_h)S(K, L, e) - E\left[\frac{\partial C^P}{\partial TP_a}(1 + \varepsilon)S(K, L, e) \right] = 0, \tag{16}
\]

\[
(1 - \tau_s)(-2)\beta^*S(K, L, e)^2d\sigma^2 + \Delta_e \frac{\partial e}{\partial \beta^*} = 0, \tag{17}
\]

\[
(1 - \tau_s)\left[1 - 2(\beta^*)^2S(K, L, e)d\sigma^2 \right] S_L - (1 - \tau_s)w \\
+ \left[(\tau_s - \tau_h)(p_x + tp) - E\left[\frac{\partial C^P}{\partial TP_a}(1 + \varepsilon) \right] tp \right] S_L + \Delta_e \frac{\partial e}{\partial \beta} = 0, \tag{18}
\]

\[
(1 - \tau_s)\left[1 - 2(\beta^*)^2S(K, L, e)d\sigma^2 \right] S_K - [r - (\tau_s - \tau_h)rb + C^I(b)] \\
+ \left[(\tau_s - \tau_h)(p_x + tp) - E\left[\frac{\partial C^P}{\partial TP_a}(1 + \varepsilon) \right] tp \right] S_K + \Delta_e \frac{\partial e}{\partial K} = 0, \tag{19}
\]

where the profit wedge of an additional unit of effort is given by

\[
\Delta_e = (1 - \tau_s)\left[(1 - 2(\beta^*)^2S(K, L, e)d\sigma^2) S_e - c'(e) \right] \\
+ \left[(\tau_s - \tau_h)(p_x + tp) - E\left[\frac{\partial C^P}{\partial TP_a}(1 + \varepsilon) \right] tp \right] S_e \\
= [(1 - \tau_s)(1 - \beta^*) + (\tau_s - \tau_h)p_x]S_e > 0. \tag{20}
\]

The second equality in equation (20) stems from applying the manager’s first-order condition (10) to replace \(c'(e) \) in the first line and utilizing the first-order condition for optimal transfer pricing (16) in the second line.

First, from equation (15) follows the standard condition for internal debt shifting:

\[
(\tau_s - \tau_h)r = \frac{\partial C^I(b)}{\partial b}. \tag{21}
\]
The marginal debt tax shield of internal debt must be equal to marginal costs of internal debt shifting. As in the standard models (Mintz and Smart 2004; Schindler and Schjelderup 2012), the tax-efficient capital structure is independent of production. For a compensation scheme based on EBIT, the capital structure is also unaffected by the principal-agent problem. Furthermore, there is no influence from transfer pricing as long as shifting costs of internal debt and transfer pricing are separable.

Second, for optimal transfer pricing follows from equation (16) that marginal tax savings from overinvoicing the royalty rate need to meet marginal expected shifting costs, i.e.,

$$\tau_s - \tau_h = \mathbb{E}\left[\frac{\partial C_P}{\partial TP^{a}}(1 + \varepsilon)\right].$$

The optimal royalty rate TP^{a} is independent of the capital structure, but depends on investment in capital and labor because the production level determines marginal shifting. Effectively, however, the HQ chooses an optimal level of income TP^{a} that shall be shifted. This level is determined by the tax rate differential and independent of production and sales. Accordingly, stochastic shifting costs and principal-agent problems do not affect the standard finding that abusive transfer pricing does not have an intensive-margin effect on investment, see Juranek et al. (2018, 2019).

Third, the optimal effective compensation rate of the manager follows as trade-off between the marginal profitability from inducing more effort and the marginal costs from compensating the manager for the higher income risk it has to bear. Formally, equation (17) implies

$$\frac{\beta^{*}}{1 - \beta^{*}} = \left(1 + \frac{(\tau_s - \tau_h)p_x}{(1 - \beta^{*})(1 - \tau_s)}\right) S_e \frac{\partial \varepsilon}{\partial \beta^{*}}.$$

If the manager would be risk-neutral, i.e., if $d = 0$, an effective compensation rate of $\beta^{*} = 1$ would be optimal and a first-best is reached (cf. Holmström and Milgrom 1987). All risk and marginal profits would be allocated to the manager while the HQ extracts expected profits via a negative fixed salary. For risk-averse managers with $d > 0$, a full participation in business risk is too expensive, and we end up with an interior solution $\beta^{*} \in (0, 1)$.

Importantly, the abusive transfer price TP^{a} does not affect the effective compensation rate β^{*} in (23). But the effective rate translates into an optimal statutory compensation rate that incorporates the dilution of profits via royalty payments. We have

$$\beta = \frac{\beta^{*}}{1 - p_x - TP^{a}}.$$

Consequently, the observed compensation rate increases with royalty payments and particularly with income shifting. Firms that use their transfer pricing TP^{a} more aggressively will sign compensation contracts that feature a higher share of EBIT for managers. In
contrast, internal debt shifting and the capital structure do not have a direct effect on executive pay.

Fourth, the fact that there is no intensive-margin effect of transfer pricing allows for simplifying the first-order condition for labor demand. Applying equation (22) in (18), it follows that optimal labor demand balances marginal revenue from an additional worker plus the tax savings from an higher arm’s-length royalty payment and the net effect via adjustments in managerial effort against the wage rate, that is,

\[
[1 - 2(\beta^*)^2 S(K, L, e)\sigma^2] S_L + \frac{\tau_s - \tau_h}{1 - \tau_s} p_x \left[S_L + S_e \frac{\partial e}{\partial L} \right] + (1 - \beta^*) S_e \frac{\partial e}{\partial L} = w. \tag{25}
\]

Importantly, for a given effective compensation rate \(\beta^*\), the choice of the abusive transfer price \(tp\) does not affect the labor-demand condition. Similarly, internal leverage does not directly affect the demand for labor, but it has an indirect effect via capital investment as becomes clear from the next equation.

Finally, rearranging the first-order condition for capital demand (19) leads to

\[
[1 - 2(\beta^*)^2 S(K, L, e)\sigma^2] S_K + \frac{\tau_s - \tau_h}{1 - \tau_s} p_x \left[S_K + S_e \frac{\partial e}{\partial K} \right] + (1 - \beta^*) S_e \frac{\partial e}{\partial K} = r - \frac{(\tau_s - \tau_h)rb + C^I(b)}{1 - \tau_s}, \tag{26}
\]

where the non-deductibility of part of the capital costs triggers the standard corporate-tax distortion that increases effective capital costs. In optimum, these effective capital costs, i.e., the right hand side in equation (26), are balanced against marginal revenue from higher capital investment plus the tax savings from an higher arm’s-length royalty payment and the net effect via adjustments in managerial effort. As in the case of labor demand, abusive transfer pricing does not have any effect on optimal factor demand. In contrast, debt shifting has a first-order effect on effective capital costs because internal leverage \(b\) shelters part of the normal rate of return from local taxation and reduces costs (cf. Hong and Smart 2010; Schindler and Schjelderup 2012). Consequently, debt shifting induces higher capital investment, all else equal.

We can summarize our results so far as

Proposition 1 For compensation schemes based on EBIT(DA), income shifting via internal debt \((b)\) has no direct effect on managerial incentives and compensation pay, but fosters capital investment. In contrast, tax-induced transfer pricing in royalty payments \((tp)\) does not affect investment and production, but has a first-order negative effect on managerial effort. In order to set incentives correctly, the statutory compensation rate \((\beta)\) will compensate managers for income shifting. Thus, the observable compensation structure is a mirror image of the transfer-pricing strategy of the firm.

Proposition 1 supports the view that high compensation rates and compensation payments to managers that consistently deliver low profitability, i.e., a low EBIT(DA), over
several years should form a red flag for tax authorities. Unprofitable firms with high variable compensation payments (i.e., high compensation rates for their executive managers) are likely reporting no income because of substantial income shifting in royalty payments. The case of internal debt is more involved, and we will provide a more detailed analysis in the following section. Nevertheless, it is obvious already that there are major differences in the implications of the different income-shifting channels.

5 Responsiveness of Income Shifting and Compensation Schemes

To keep the model tractable when analyzing the impact of income-shifting incentives formally, we assume in this section that the sales function \(S(K, L, e) \) is multiplicative in managerial effort and takes the form \(S = s(K, L) \cdot e \). Furthermore, we assume that the effort costs of the manager are quadratic and take the form \(c(e) = e^2 \). These two assumption allow for deriving managerial effort explicitly from the first-order condition (10). Applying these functional forms leads to an optimal effort choice by the manager of

\[
e = \frac{\beta^* s(K, L)}{1 + 2(\beta^*)^2 s(K, L)^2 \sigma^2}
\]

(27)

Moreover, we introduce the cost parameters \(\psi \) and \(\chi \) that measure the tightness of thin capitalization rules and transfer pricing regulation, respectively. A higher \(\psi \) indicates that it is more difficult to justify higher interest expenses on internal debt so that both absolute and marginal costs of debt shifting increase, i.e., \(C^I_\psi > 0 \) and \(C^I_b \psi > 0 \). Similarly, a higher \(\chi \) implies that abusive transfer pricing is more expensive, both absolute and on the margin; hence, \(C^P_\chi > 0 \) and \(C^P_{TP \chi} > 0 \).

With these additional cost parameters, we can analyze three different aspects of income shifting. First, a decrease in the tax rate of the HQ \(\tau_h \) shows the impact of a larger tax differential and higher incentives to shift income, both via arm’s-length payments on the patent \((p_x) \), debt shifting \((b) \) and abusive transfer pricing \((tp) \). Second, variation in \(\psi \) allows for isolating the impact of incentives to conduct debt shifting. Equivalently, a variation in \(\chi \) identifies the effects of abusive transfer pricing. Additionally, we can examine how personal characteristics of the local manager, captured by its risk aversion parameter \(d \) influence production and income shifting.

In order to derive the comparative statics analytically, we have to totally differentiate the system of first-order conditions of the HQ, equations (15) to (19), and optimal managerial effort (27). See the appendix for details. The comparative statics confirm that the choice of the income shifting strategies is neither affected by the moral hazard problem related to managerial effort nor investment decisions in the affiliate. It also documents,
however, that both income-shifting channels will have an impact on the compensation scheme of the manager.

In more detail, a change in regulation that only affects the cost of transfer pricing, i.e., a change in χ, makes transfer pricing marginally more expensive, and for given tax savings, induces a reduction in the amount of income shifted. Formally, it follows (see the Appendix)

$$
\frac{dTP}{d\chi} = \frac{-C_{ih}^{\prime} \cdot E[C^{P}_{TP}\cdot(1 + \epsilon) \cdot |BH|]}{C_{ih}^{\prime} \cdot E[C^{P}_{TPP}(1 + \epsilon) \cdot |BH|]} = \frac{-E[C^{P}_{TP}\cdot(1 + \epsilon)]}{E[C^{P}_{TPP}(1 + \epsilon)]} < 0. \tag{28}
$$

At the same time, transfer pricing does not affect investment, production and the effective compensation rate of the manager because it follows from equation (A.6) that

$$
\frac{dL}{d\chi} = \frac{dK}{d\chi} = \frac{d\beta^{*}}{d\chi} = \frac{de}{d\chi} = 0. \tag{29}
$$

At the margin, tax savings and income-shifting costs balance each other so that there is no net investment incentive. Furthermore, holding the effective compensation rate β^{*} constant ensures that income shifting does not affect managerial effort and allows for separating the principal-agent problem. Hence, our results generalize findings under centralized decision making that transfer pricing in intangibles is a pure lump-sum shifting of income without any investment and production effects (see Juranek et al., 2018). From our analysis follows that adding an endogenous effort choice by a local affiliate manager and incorporating a principal-agent problem into the income-shifting setting does not affect this finding.

Our results imply that all adjustment of transfer pricing is handled via the surcharge tp on the arm’s-length royalty rate and it follows from equation (2) that the change in expected royalty payments $TP = E[TP]$ is equal to

$$
\frac{dTP}{d\chi} = \frac{dtp}{d\chi} s(K, L) e \iff \frac{dtp}{d\chi} = \frac{dTP/d\chi}{S(K, L)}. \tag{30}
$$

Then, the optimal change in the statutory compensation rate β is obtained by differentiating equation (24) as

$$
\frac{d\beta}{d\chi} = \frac{\beta^{*}}{(1 - p_x - tp)^2} \frac{dtp}{d\chi} = \beta \cdot \frac{dTP/d\chi}{(1 - p_x - tp)S(K, L)}, \tag{31}
$$

where $(1 - p_x - tp)S(K, L)$ is expected sales revenue after royalty payments in the affiliate.

Accordingly, we can extent our result in Proposition 1 that the statutory compensation rate mirrors the transfer-pricing strategy of the firm by a hypothesis that is directly testable empirically:

Proposition 2 In expected values, a change in tax-induced income shifting triggers a
corresponding adjustment in the compensation schemes of affiliate managers such that the relative change in the compensation rate \(\frac{d\beta}{d\chi} \) meets the relative change in after-royalty sales revenue
\[
\frac{dTP}{dx} \frac{1}{(1-p_x-t_p)S(K,L)}.
\]

Similarly to the case of transfer pricing, a change in regulation that only affects the cost of debt shifting, i.e., a change in \(\psi \), leads to the standard effects that are well-known under centralized decision making. Stricter regulation increases the marginal costs of internal leverage and reduces debt shifting as (see the Appendix again)
\[
\frac{db}{d\psi} = -\frac{C_{Ib}^I E[C_{PTP}^P (1 + \epsilon)] \cdot |BH|}{C_{bb}^I E[C_{PTP}^P (1 + \epsilon)] \cdot |BH|} = -\frac{C_{Ib}^I}{C_{bb}^I} < 0.
\]

Once more, the choice of the income-shifting device neither is affected by investment decisions nor by the problem of incentivizing the local manager. As debt shifting does not affect EBITDA, the latter result is not surprising. In contrast to transfer pricing, however, there is an indirect effect via investment choices. Higher internal leverage reduces effective capital costs and fosters capital investment. Larger capital investment triggers higher production and a larger EBITDA, but also more risk for the manager. The former investment effect relaxes the incentivization problem because \(\frac{de}{dK} > 0 \) as long as risk aversion is sufficiently low and the assumption in equation (A.5) holds. Thus, the indirect investment effect lowers the effective compensation rate, all else equal. The latter risk effect implies higher costs to incentivize managers that increase with their risk aversion. Hence, the risk effect should lead to a further decrease in the effective compensation rate \(\beta^* \), and this decrease is stronger the higher the risk aversion of the manager.

Formally, we can show so far that
\[
\frac{dz}{d\psi} \neq 0 \quad \forall \ z = L, K, \beta^*, e,
\]
and conclude with another empirically testable hypothesis as

Proposition 3 Although a change in debt shifting does not have a direct effect on an EBITDA-based compensation scheme for affiliate managers, there is an indirect effect via changes in investment. Regulation that reduces debt shifting will affect manager compensation and likely increases the compensation rate.

Both Propositions 2 and 3 should be empirically testable if sufficient data on the accounts of affiliates and the compensation schemes of their managers are available. In order to isolate and identify the different effects from transfer pricing and debt shifting separately, it appears preferable to utilize changes in the income-shifting regulation as exogenous shocks. With respect to transfer pricing, there have been various changes in the documentation rules that trigger higher shifting costs, see, e.g., Lohse and Riedel (2013). Variation in transfer pricing risk (e.g., Mescall and Klassen, 2014) might also
generate sufficient exogenous variation. When it comes to regulation of debt shifting, there have been various changes in thin capitalization rules over time that have been used to analyze the impact on capital structure and firm’s investment (e.g., Büttner et al., 2012; Blouin et al., 2014; Büttner et al., 2018). No study, however, has analyzed the link to compensation schemes yet.

The implementation of the OECD BEPS Action Plan (OECD, 2015a) should provide more variation in regulation and costs of income shifting. Resting the analysis on changes in regulation is preferable compared to using the statutory tax differential as a measure for specific income-shifting channels, because a larger tax differential fosters both transfer pricing and debt shifting. As the two strategies likely have offsetting effects on the compensation rate, a clear identification might become difficult. Furthermore, a larger tax differential also fosters the tax savings from the arm’s-length royalty payment. Under centralized decision making, the arm’s-length payment has a positive investment effect (Juranek et al., 2018), and this should carry over to our setting as long as risk aversion of the affiliate manager is not too high. Then, a change in the tax rate differential triggers additional confounding effects.

Formally, the three different margins of a change in the tax differential become visible in the vector related to a change in the HQ’s tax rate t_h in equation (A.6). The term related to $b r$ in the fifth row captures the investment effect of debt shifting. All terms related to p_x in rows three to five capture the impact of the arm’s-length royalty payment.

6 Conclusions

This study theoretically models the interaction of the main channels for income shifting in MNEs and agency costs resulting from moral hazard by managers that endogenously choose their unobservable working effort in a decentralized firm structure. Most of the income-shifting literature only focuses on centralized decision making and neglects issues resulting from decentralized decision rights. The literature that incorporates decentralized decision making rather analyzes the coordination of production between (upstream and downstream) subsidiaries and the bargaining of transfer prices. By and large, agency costs resulting from managerial effort and the implications for compensation schemes are still part of a “black box” in the process of international tax planning, and in particular the effects of internal debt shifting have been ignored completely.

In an attempt to improve the understanding of this process, we look at a setting where a local manager is incentivized by compensation payments, depending on EBIT(DA). We find that shifting of internal debt does not have a direct effect on management incentives, but has positive effects on investments. Thus, there is a repercussion effect that turns out to be ambiguous. The overall effect of debt shifting on managerial incentivization depends on the level of managers’ risk aversion and on assumptions on complementarity
of input factors. In contrast, transfer pricing in royalty payments has a negative direct incentive effect that is neutralized, however, by adjusting the compensation contract, i.e. increasing the compensation rate in the profit metrics. Importantly, there is no indirect effect from this channel because abusive royalty payments do not affect investment or production. Hence, the higher compensation rate mirrors one-to-one the transfer pricing strategy of the firm so that observable information on compensation schemes may reveal the transfer pricing of the MNE.

Besides shedding light on the process behind international tax planning in a decentralized firm and offering a framework that allows for incorporating principal-agent aspects and endogenous compensation schemes to incentivize managers, our results directly speak to tax auditors. More precisely, our results might allow for deducing certain audit patterns for targeted firms. For example, as the transfer-pricing strategy in intangibles is perfectly mirrored in the compensation rate of managers, subsidiaries that consistently report low EBIT(DA) over several years, but provide their managers with high compensation rates in their profit metrics, very likely operate a tax-aggressive pricing scheme for the use of their intellectual property. Hence, such firms should be prime targets for tax audits.

If suitable data is available, we believe that our hypotheses can be tested empirically. This might be particularly interesting if firm-level data can be combined with personal characteristics of the local managers. Moreover, on the theoretical side, our set-up can be extended to capture different allocations of decision rights between the HQ and subsidiaries and additional trade-offs from incorporating the bargaining process for intermediate goods between upstream and downstream subsidiaries. We leave these aspects for future research.

7 Appendix

For later use, we derive the comparative-static effects on managerial effort first. Thereto, we partially differentiate equation (27) to find

\[
\begin{align*}
\frac{\partial e}{\partial \beta^*} &= \frac{1 - 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2}{[1 + 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2]^2} s(K, L), \quad (A.1) \\
\frac{\partial e}{\partial L} &= \frac{1 - 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2}{[1 + 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2]^2} \beta^* s_L, \quad (A.2) \\
\frac{\partial e}{\partial K} &= \frac{1 - 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2}{[1 + 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2]^2} \beta^* s_K, \quad (A.3) \\
\frac{\partial e}{\partial d} &= -\frac{2(\beta^*)^2 s(K, L)^2 \cdot \sigma^2}{[1 + 2(\beta^*)^2 s(K, L)^2 \cdot d \cdot \sigma^2]^2} \beta^* s(K, L) < 0. \quad (A.4)
\end{align*}
\]

Neither internal leverage b nor transfer pricing tp have a direct impact on the manager’s effort decision as long as the HQ adjusts the effective remuneration rate β in order to
compensate effects from transfer pricing. Furthermore, the tax rate of the HQ, \(\tau_h \), and the tightness of income shifting regulation, parameters \(\psi \) and \(\chi \), do not affect the effort decision directly. Consequently \(\frac{\partial \tau}{\partial b} = \frac{\partial \tau}{\partial p} = \frac{\partial \tau}{\partial \tau_h} = \frac{\partial \tau}{\partial c} = \frac{\partial \tau}{\partial x} = 0 \).

In the following, we will assume that the risk aversion of the manager is sufficiently low to ensure that the standard incentive effects on managerial effort hold. More specifically, we assume that

\[
1 - 2(\beta^*)^2s(K, L)^2 \cdot d \cdot \sigma^2 > 0, \tag{A.5}
\]

which is also a sufficient condition for the second-order condition of effort choice to be guaranteed. Under assumption (A.5), we have that \(\frac{\partial \tau}{\partial \tau} > 0, \frac{\partial \tau}{\partial L} > 0 \) and \(\frac{\partial \tau}{\partial K} > 0 \). A higher participation in EBITDA and an increased use of production factors, leading to higher sales, foster the return on effort and induce the manager to work harder.

The sensitivities of the effort elasticity follow as

\[
\begin{align*}
\frac{\partial^2 e}{\partial (\beta^*)^2} & = - \frac{4\beta^*s(K, L)^3d \cdot \sigma^2}{N^3} \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] < 0, \\
\frac{\partial^2 e}{\partial \beta \partial L} & = \frac{s_L}{N^3} - \frac{s_L}{N^3} \cdot 4(\beta^*)^2s(K, L)^2d \cdot \sigma^2 \cdot [3 - (\beta^*)^2s(K, L)^2d \cdot \sigma^2], \\
\frac{\partial^2 e}{\partial \beta^* \partial K} & = \frac{s_K}{N^3} - s_K \cdot 4(\beta^*)^2s(K, L)^2d \cdot \sigma^2 \cdot [3 - (\beta^*)^2s(K, L)^2d \cdot \sigma^2] = \frac{s_L}{s_K} \frac{\partial^2 e}{\partial \beta \partial L}, \\
\frac{\partial^2 e}{\partial \beta^* \partial d} & = -s(K, L) \frac{2(\beta^*)^2s(K, L)^2d \cdot \sigma^2}{N^3} \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] = \frac{\beta^*}{2d} \frac{\partial^2 e}{\partial (\beta^*)^2} < 0, \\
\frac{\partial^2 e}{\partial L^2} & = \beta^* s_L \frac{1 - 2(\beta^*)^2s(K, L)^2d \sigma^2}{N^3} - \beta^* s_L \cdot 4(\beta^*)^2s(K, L)s_Ld \cdot \sigma^2 \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] < 0, \\
\frac{\partial^2 e}{\partial L \partial K} & = \beta^* s_{LK} \frac{1 - 2(\beta^*)^2s(K, L)^2d \sigma^2}{N^3} - \beta^* s_K \cdot 4(\beta^*)^2s(K, L)s_Kd \cdot \sigma^2 \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2], \\
\frac{\partial^2 e}{\partial L \partial d} & = -\beta^* s_L \frac{2(\beta^*)^2s(K, L)^2 \cdot \sigma^2}{N^3} \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] < 0, \\
\frac{\partial^2 e}{\partial K^2} & = \beta^* s_{KK} \frac{1 - 2(\beta^*)^2s(K, L)^2d \sigma^2}{N^3} - \beta^* s_K \cdot 4(\beta^*)^2s(K, L)s_Kd \cdot \sigma^2 \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] < 0, \\
\frac{\partial^2 e}{\partial K \partial d} & = -\beta^* s_K \frac{2(\beta^*)^2s(K, L)^2 \cdot \sigma^2}{N^3} \cdot [3 - 2(\beta^*)^2s(K, L)^2d \cdot \sigma^2] < 0,
\end{align*}
\]

where \(N = 1 + 2(\beta^*)^2s(K, L)^2d \sigma^2 \).
Totally differentiating the system of first-order conditions of the HQ’s profit-maximization problem, equations (15) to (19), and the manager’s optimal effort choice (27) leads to

\[
\begin{pmatrix}
-C_{bh}^i & 0 & 0 & 0 & 0 \\
0 & -E[C_{TP}^i \cdot (1 + \epsilon)] & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
db \\
dT^P \\
d\beta^* \\
dL \\
dK \\
d\epsilon \\
\end{pmatrix}
\begin{pmatrix}
1 \\
\frac{ps}{1 - \tau_s} \frac{dp}{d\beta^*} \\
\frac{ps}{1 - \tau_s} (s_{Lc} + s(K, L) \frac{dc}{dL}) \\
\frac{br}{1 - \tau_s} + \frac{ps}{1 - \tau_s} (s_{Kc} + s(K, L) \frac{dc}{dK}) \\
0 \\
0 \\
\end{pmatrix}
\begin{pmatrix}
C_{bh}^i \\
E[C_{TP}^i \cdot (1 + \epsilon)] \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\begin{pmatrix}
d\tau_h + \\
d\psi + \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\begin{pmatrix}
d\chi, \\
\end{pmatrix}
\]

where the submatrix \(BH \) is given by

\[
\begin{pmatrix}
B \beta s(K, L)e - \frac{dc}{d\beta} + A_2 \frac{\partial^2 e}{\partial \beta \partial \sigma} \\
2B Ls(K, L)e - s(K, L) \frac{dc}{dL} + A_2 \frac{\partial^2 e}{\partial L^2} \\
2B Ks(K, L)e - s(K, L) \frac{dc}{dK} + A_2 \frac{\partial^2 e}{\partial K^2} \\
(B \epsilon - 1)s(K, L) \\
\end{pmatrix}
\begin{pmatrix}
B \beta \beta^* s_{LE} + A_2 \frac{\partial^2 e}{\partial \beta \partial \sigma} \\
B \beta \beta^* s_{LE} + A_2 \frac{\partial^2 e}{\partial L^2} \\
B \beta \beta^* s_{LE} + A_2 \frac{\partial^2 e}{\partial K^2} \\
(B \epsilon - 1)\beta^* s_{LE} \\
\end{pmatrix}
\begin{pmatrix}
B \beta \beta^* s_{KE} + A_2 \frac{\partial^2 e}{\partial \beta \partial \sigma} \\
B \beta \beta^* s_{KE} + A_2 \frac{\partial^2 e}{\partial L^2} \\
B \beta \beta^* s_{KE} + A_2 \frac{\partial^2 e}{\partial K^2} \\
(B \epsilon - 1)\beta^* s_{KE} \\
\end{pmatrix}
\begin{pmatrix}
2B \beta \beta^* s(K, L) \\
B \beta \beta^* s(K, L) + A_1 s_L \\
B \beta \beta^* s(K, L) + A_1 s_K \\
[1 + 2(\beta^*)^2 s(K, L)^2 d\sigma^2] \\
\end{pmatrix}
\]

where we differentiated for the total volume of profits shifted by transfer pricing (\(TP^a \)) instead of the abusive royalty rate \(tp \), and where

\[
A_1 = 1 + \frac{\tau_s - \tau_h}{1 - \tau_s} \frac{ps}{1 - \tau_s} - 2(\beta^*)^2 s(K, L)e \cdot d \cdot \sigma^2, \tag{A.7}
\]

\[
A_2 = 1 - \beta^* + \frac{\tau_s - \tau_h}{1 - \tau_s} \frac{ps}{1 - \tau_s} > 0, \tag{A.8}
\]

\[
B_\beta = -2e \cdot d \cdot \sigma^2 < 0, \tag{A.9}
\]

\[
B_L = -2\beta^* \cdot d \cdot \sigma^2 \cdot s_L \cdot e < 0, \tag{A.10}
\]

\[
B_K = -2\beta^* \cdot d \cdot \sigma^2 \cdot s_K \cdot e < 0, \tag{A.11}
\]

\[
B_\epsilon = 2(\beta^*)^2 s(K, L)^2 \cdot e \cdot d \cdot \sigma^2 > 0. \tag{A.12}
\]
References

http://dx.doi.org/10.1787/9789264202719-en.

