
Performance Attribution for

Portfolio Constraints

Andrew W. Lo∗ and Ruixun Zhang†

3 Aug 2023

Abstract

We propose a new performance attribution framework that decomposes a constrained portfo-
lio’s holdings, expected utility, expected returns, variance, and realized returns into compo-
nents attributable to: (1) the unconstrained mean-variance optimal portfolio; (2) individual
static constraints; and (3) information, if any, arising from those constraints. A key contri-
bution of our framework is the recognition that constraints may contain information that is
correlated with returns, in which case imposing such constraints can affect performance. The
excess return from information is positive (negative) when this correlation is positive (neg-
ative) and the constraint is binding. The excess variance of a portfolio is negative when the
holdings of a shrinkage portfolio and the holdings attributable to constraints are positively
correlated, and the degree to which variance is reduced depends on the squared correlation
between returns and constraints. We provide simulated and empirical examples involving
constraints on ESG portfolios. Contrary to conventional wisdom, constraints may improve
portfolio performance under certain scenarios.
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1 Introduction

Constraints are ubiquitous in portfolio management. They are regularly imposed, both

directly and indirectly, by portfolio managers, regulators, risk managers, trading desks, and

investors. Because these constraints directly affect the portfolio construction process, all

stakeholders have become interested in quantifying how constrained portfolios deviate from

the unconstrained optimal benchmark, using various metrics and concepts such as unrealized

alpha, opportunity cost, and implementation inefficiency (Clarke, de Silva, and Thorley,

2002; Grinold, 2005).

Measuring the impact of constraints on portfolio performance has become particularly

important as socially responsible investing (SRI) and environmental, social, and governance

(ESG) products have grown in popularity over the last decade. The construction of these

portfolios typically involves constraints based on a firm’s characteristics, such as its ESG

score, its amount of carbon emissions, its prospect of developing a disease-curing drug,

or the industry to which it belongs.1 Popular methods include negative screening, which

imposes filters so that certain companies are excluded from the investable universe; positive

screening, where companies are selected for high values of certain attributes; and factor

integration, which imposes constraints on the average level of a portfolio’s characteristics,

such as its ESG score or other fundamental and technical factors of a company.2

The growth in popularity and assets under management of SRI and ESG has also triggered

a backlash. For example, on 4 August 2022, a letter signed by the attorneys general of

nineteen states was sent to BlackRock’s CEO, Laurence Fink, expressing concern over its

asset manager’s ESG policies and how those policies may affect their holdings of fossil fuel

energy companies.3 These are not minor concerns, given that the legal penalty for violating

one’s fiduciary duty involves personally making up any losses suffered by the client and

restoring to the client any profits made by the fiduciary’s service provision to said client.4

In addition, it is also unclear from the empirical literature whether SRI and ESG investing

are adding or removing value from an investor’s point of view.

1For examples on the way constraints are imposed to construct SRI and ESG portfolios, and recent theories
on the asset-pricing implications, see Pástor, Stambaugh, and Taylor (2021, 2022), Pedersen, Fitzgibbons,
and Pomorski (2021), Idzorek, Kaplan, and Ibbotson (2021), Zerbib (2022), and Lo and Zhang (2023).

2For a discussion of these different portfolio construction methodologies, see Roselle (2016), Eccles, Kas-
trapeli, and Potter (2017), Amel-Zadeh and Serafeim (2018), and Cappucci (2018).

3“BlackRock’s actions on a variety of governance objectives may violate multiple state laws. Mr. Mc-
Combe’s letter asserts compliance with our fiduciary laws because BlackRock has a private motivation that
differs from its public commitments and statements. This is likely insufficient to satisfy state laws requiring
a sole focus on financial return. Our states will not idly stand for our pensioners’ retirements to be sacrificed
for BlackRock’s climate agenda.” See https://www.texasattorneygeneral.gov/sites/default/files/

images/executive-management/BlackRock%20Letter.pdf, accessed 15 December 2022.
4See 9 U.S. Code §1109 - Liability for breach of fiduciary duty.
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How can we reconcile SRI and ESG investing with fiduciary duty? The answer lies in

developing a framework in which the financial impact of constraints can be measured, the

subject of this article.

We develop a general framework to attribute the performance of portfolios to contri-

butions from individual constraints. Conventional wisdom typically maintains that a con-

strained portfolio must have a non-superior risk/reward profile compared to the uncon-

strained case, because the former contains a proper subset of securities of the unconstrained

version, and mathematical logic suggests that the constrained optimum is at best equal to

the unconstrained optimum or, more likely, inferior.

However, the non-superiority of constrained optima relies on a key assumption that is

almost never explicitly stated: the constraint does not provide additional information re-

garding asset returns. This implies that either investors have full information about asset

returns when constructing portfolios ex post, or when constraints are assumed to be sta-

tistically independent of the returns. In some cases, such an assumption is warranted; for

example, one can imagine constructing a subset of securities with CUSIP identifiers that

contain prime numbers. Clearly such a constraint has no relation to the returns of any

security, hence imposing such a constraint can only reduce the risk-adjusted return of the

optimized portfolio.

But what if investors do not have full information about returns ex ante and the constraint

is not independent of the returns? For example, consider the constraint, “invest only in those

companies for which their stock prices will appreciate by more than 10% over the next 12

months.” Apart from the infeasibility of imposing such a condition, it should be obvious that

this constraint would, in fact, increase the risk-adjusted return of the optimized portfolio.

Therefore, the answer to the question of quantifying the impact of constraints rests entirely

on whether and how the constraints are related to the performance characteristics of the

securities under consideration.

To formalize this idea, we consider investors whose objective is to obtain a portfolio that

makes an optimal trade-off between return and risk using the standard mean-variance utility.

We denote the optimal portfolio with respect to this objective under no constraints as the

mean-variance optimal (MVO) portfolio. However, the portfolio obtained while imposing

all constraints will likely differ from the MVO portfolio due to the effect of the constraints.

Therefore, we develop a methodology to decompose the constrained portfolio’s holdings,

expected utility, expected returns, and realized returns into different components: those

attributable to the MVO portfolio, those to the individual constraints treated as static, and

those to the information contained in the constraints. This methodology yields a constraint

attribution framework for evaluating the performance of a portfolio.
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The key to our framework is to model the information content available in portfolio

constraints. For a universe of N assets and portfolio weights ω ≡ [ω1 ω2 · · · ωN ]′, we

assume that each constraint is based on a firm characteristic, x ≡ [x1 x2 · · · xN ]′, where

xi is the characteristic for the i-th asset, such as its ESG score or a label representing its

industry. A constraint is denoted by A(x)′ω = a1(x1)ω1 + · · · + aN(xN)ωN = b (or ≥ b),

where b represents the constraint threshold and ai(xi) symbolizes that the coefficient of the

i-th asset depends on its characteristic xi. In our framework, investors do not always have

perfect knowledge of—nor are they necessarily fully rational in exploiting—information in

these constraints in terms of incorporating it into return forecasts.5

By modeling the firm characteristic x as a random variable and allowing it to be correlated

with asset returns, we are able to provide an explicit decomposition of the performance of

a portfolio attributable to information in its constraints, which depends critically on the

expected value and covariance matrix of returns conditioned on x. Furthermore, under the

special case of normally distributed returns and independent characteristics, we demonstrate

that the information contribution from a constraint is determined by the correlation between

x and the individual asset returns. The excess return from information is positive when this

correlation is positive and the constraint is binding. The excess variance of a portfolio is

negative when the portfolio holdings of a shrinkage portfolio (defined in 18) and the holdings

attributable to constraints are positively correlated, and the magnitude of the reduction in

variance depends on the absolute value of the same correlation.

This simple but profound result highlights the mechanism through which a constraint is

able to contribute to the performance of a portfolio. While a constraint treated as static must

decrease a portfolio’s expected utility, the information in the constraint can contribute either

positively or negatively to a portfolio’s expected utility and returns, depending on whether

the characteristics of the constraint are positively or negatively correlated with asset returns.

We apply our framework to two common classes of portfolio constraints. The first is when

investors constrain the exposure to a certain factor, such as the average ESG score, market

capitalization, beta, or book-to-market values of the portfolio. The second is exclusionary

investing, in which certain assets are excluded from the portfolio based on criteria such as a

minimum ESG score or whether the firm belongs to an industry associated with “sin” stocks.

We derive additional analytical results for these special types of constraints and provide

simulated examples to illustrate the attribution of expected returns and utilities in these

scenarios. In particular, constraints may contribute positively to both the expected return

5There is a large literature documenting limited attention (Corwin and Coughenour, 2008; Hirshleifer,
Lim, and Teoh, 2011) and bounded rationality (Simon, 1955; Hirshleifer, Subrahmanyam, and Titman, 2006;
Kogan et al., 2006) in investor behavior.
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and utility if the information contained in the constraint is sufficiently positively correlated

with asset returns, because they serve as an indirect mechanism to use the information.

Finally, using real-world datasets, including MSCI KLD ESG ratings, the Compustat

Historical Segment compilation, daily returns and industry classification from the CRSP

dataset, and the well-known Fama-French factor data, we illustrate how our framework can

be applied to quantify the impact of ESG investing when the average portfolio ESG score

is required to be above a certain threshold, as well as exclusionary investing based on sin

stocks and stranded assets. While the expected utility contribution of these constraints,

treated as static, is indeed negative, the contribution from the information contained in

the constraints to portfolio performance is dynamic over time. This contribution is generally

negative before 2010, implying that high ESG stocks and non-stranded assets delivered lower

excess returns relative to the Fama-French five-factor model on average, which is consistent

with equilibrium theories of ESG returns (Pástor, Stambaugh, and Taylor, 2021; Pedersen,

Fitzgibbons, and Pomorski, 2021). However, after 2011, the information in the constraints

contributes positively to portfolio performance, reflecting the increasing attention toward SRI

and ESG-related issues, an effect consistent with Pástor, Stambaugh, and Taylor’s (2022)

and Lo, Zhang, and Zhao’s (2022) findings.

We emphasize that our intention in this article is not to provide the best measure of

whether SRI and ESG deliver positive or negative excess returns.6 Instead, our primary

objective is to illustrate how our framework can be used to attribute performance to any

portfolio constraints and—given that any firm characteristics may be correlated to returns—

to the information contained in those constraints.

2 Related Literature

Our article contributes to the literature on portfolio theory, and in particular, to performance

attribution in portfolio optimization. The major breakthrough dates back to 1952, when

Harry Markowitz launched the field of modern portfolio theory (Markowitz, 1952). The

classical literature on performance attribution include Fama (1972), Daniel et al. (1997),

and Brinson, Hood, and Beebower (1986). Surveys in this area include Grinold and Kahn

(1999, 2019), Steinbach (2001), Rubinstein (2002), Kolm, Tütüncü, and Fabozzi (2014),

Markowitz (2014), and Bacon (2019).

One of the pioneering contributions for understanding and quantifying the impact of

6In fact, there is substantial divergence among ESG measures, even when they purport to capture the
same concepts (Gibson, Krueger, and Schmidt, 2021; Berg, Koelbel, and Rigobon, 2022). In particular,
Khan, Serafeim, and Yoon (2016) find that only firms with good ratings on material sustainability issues
significantly outperform firms with poor ratings on these issues.
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constraints is the transfer coefficient of Clarke, de Silva, and Thorley (2002, 2005). However,

one limitation of the transfer coefficient is that it only provides an aggregate measure of

the impact of constraints, and does not offer a scalable solution to decompose the effects

of individual constraints. As a result, several studies rely on the notion of shadow cost (or

Lagrange multipliers) to measure the first-order marginal cost of each constraint (Grinold,

2005; Scherer and Xu, 2007; Stubbs and Vandenbussche, 2010; Menchero and Davis, 2011;

Davis and Menchero, 2012; Tütüncü, 2012).

In the standard framework, constraints are believed to never improve the expected utility

of the optimized portfolio on an ex ante basis. However, through ex post constraint attri-

bution analysis, certain constraints may actually improve performance by preventing the

portfolio from taking bets that turn out to be harmful out of sample. This is often referred

to as the model insurance function of constraints.

However, as demonstrated in our framework, there is actually a more fundamental rea-

son why constraints may contribute positively to the expected utility and other portfolio

performance metrics: the information contained in constraints. In our framework, investors

do not always have perfect knowledge of, nor are they assumed to be fully rational in ex-

ploiting, such information. As a result, constraints serve as an indirect mechanism to use

that information, and they may contribute positively to the expected utility even on an ex

ante basis if the information contained in the constraint is sufficiently positively correlated

with returns. Our methodology provides a way to quantify this effect.

Our constraint attribution framework also contributes to the literature on the impact of

SRI, ESG, and other non-financial objectives on investment returns. Theories on the asset

pricing implications of sustainable investing date back to Merton’s (1987) model of neglected

stocks and segmented markets, Fama and French’s (2007) taste model, and, more recently,

Pástor, Stambaugh, and Taylor (2021) and Pedersen, Fitzgibbons, and Pomorski (2021).7

There is also a vast empirical literature focused on measuring the returns of SRI and ESG

investing. On the one hand, studies suggest that these investments may sacrifice returns in

markets including stocks (Fabozzi, Ma, and Oliphant, 2008; Hong and Kacperczyk, 2009;

Statman and Glushkov, 2009; Fauver and McDonald IV, 2014; Alessandrini and Jondeau,

2020), bonds (Baker et al., 2022), venture capital funds (Barber, Morse, and Yasuda, 2021),

and mutual funds (Geczy, Stambaugh, and Levin, 2021). Pástor, Stambaugh, and Taylor

(2022) show that the high returns for green assets in recent years reflect unexpectedly strong

increases in environmental concerns, not high expected returns.

On the other hand, recent empirical evidence (Madhavan, Sobczyk, and Ang, 2021;

7See also Albuquerque, Koskinen, and Zhang (2019), Berk and van Binsbergen (2021), Goldstein et al.
(2021), Idzorek, Kaplan, and Ibbotson (2021), Zerbib (2022), and Lo and Zhang (2023).
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Bansal, Wu, and Yaron, 2022; Lo, Zhang, and Zhao, 2022; Berg et al., 2023) suggests that

ESG measures are associated with higher returns, at least under certain market conditions.

Lindsey, Pruitt, and Schiller (2021) find that modifying optimal portfolio weights to achieve

an ESG-investing tilt negligibly affects portfolio performance, because ESG measures do not

provide information in addition to other observable firm characteristics.

Our findings show that the effect of a specific measure of SRI or ESG on investment per-

formance depends on the information contained in the constraints created by these measures.

These constraints need not always result in lower risk-adjusted returns. Our framework pro-

vides a methodology for quantifying the financial implications of a wide range of portfolio

constraints, not merely SRI or ESG measures.

3 A Framework for Constraint Attribution

We consider a universe of N assets whose returns are given by the random vector rt =

(r1,t, . . . , rN,t)
′.8 Because we principally consider the static portfolio selection problem in

this article, we omit the time subscript t and simply write r in most cases. We denote by

µ and Σ the expected value and covariance matrix of r, respectively. Investors construct

portfolios based on the following mean-variance optimization:

max
ω

ω′µ− 1

2
ω′Σω

s.t. Aω = b,
(1)

where ω ≡ [ω1 · · · ωN ]′ is an N -dimensional vector representing portfolio weights, b ≡
[ b1 · · · bJ ]

′ is a J-dimensional vector, and

A ≡

A′
1

· · ·
A′

J


is a J×N matrix. Together, b and A describe J constraints. In particular, A′

j is the j-th

row of A and bj is the j-th element of b, which together describe the j-th constraint.

We choose 1
2
to be the coefficient of the variance term in the utility function, and consider

the case of equality constraints in (1), both for expositional simplicity. All of our results

carry out for general coefficients of the variance term other than 1
2
. It is also easy to derive

a parallel set of results under inequality constraints, Aω ≤ b, and we describe ways to

8We follow the common convention that all vectors are assumed to be column vectors unless stated
otherwise, and all vectors and matrices are boldface.
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generalize our results throughout our exposition.

Common examples of portfolio constraints include:

ω′1 = 1 : full investment (2)

ωi = 0 : exclusion of asset i (3)

ω′A1 = b1 : maintain average firm characteristic, or factor exposure. (4)

Equation (3) represents a common constraint in exclusionary investing that removes cer-

tain assets based on a particular criterion, such as divesting from sin stocks. Equation (4)

represents a wide class of constraints that restricts the average value of a particular asset

characteristic, such as ESG, value, size, or momentum measures.

There also exist variations of the objective function in (1), or the expected utility of the

portfolio. The returns r can be interpreted either as raw returns or residual returns in excess

of some factor model. For example, Grinold and Eaton (1998), Grinold (2005), and Stubbs

and Vandenbussche (2010) consider active returns or alphas with respect to a benchmark

portfolio instead of raw returns. We also consider residual returns in excess of the Fama-

French five-factor model in our empirical analysis in Section 5. Goldberg (2021) considers

the minimization of the tracking error as the objective. Our framework can also be easily

generalized to account for these objectives.

A critical implicit assumption in the existing literature of constraint attribution is that

the constraints, A, are treated as constants, and are therefore independent of returns, r.

Under this assumption, the solution of the optimization problem in (1) without constraints,

which we refer to as the unconstrained MVO portfolio, yields the best portfolio in terms of

the objective function, and imposing constraints can only decrease the objective function.

The following result summarizes the optimal portfolio weights and the decomposition of

portfolio holdings, expected return, and expected utility attributable to each constraint.9

We provide proofs of all propositions in the Appendix.

Proposition 1 (Static Constraints). The optimal portfolio weight, ω∗, of Problem (1) is

given by:

Σω∗ = µ−A′λ∗ (5)

where the Lagrange multipliers, λ∗, are given by:

λ∗ =
(
AΣ−1A′)−1 (

AΣ−1µ− b
)
, (6)

provided that the feasible region of the constrained optimization problem is nonempty. Here

9See also Stubbs and Vandenbussche (2010) and Menchero and Davis (2011).
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λ∗ measure the shadow cost of the portfolio’s expected utility with respect to each constraint.10

Equation (5) leads to a series of decompositions.

1. Portfolio holdings decomposition.

ω∗ = Σ−1µ−Σ−1A′λ∗. (7)

• Σ−1µ: holdings of the unconstrained MVO portfolio.

• −Σ−1A′λ∗: components attributable to each constraint.

Because we refer to this decomposition repeatedly in subsequent sections, we denote:

ωMVO ≡ Σ−1µ, (8)

ωCSTR ≡ −Σ−1A′λ∗. (9)

2. Expected return decomposition.

µ′ω∗ = µ′Σ−1µ− µ′Σ−1A′λ∗. (10)

• µ′Σ−1µ: expected return of the unconstrained MVO portfolio.

• −µ′Σ−1A′λ∗: components attributable to each constraint.

3. Expected utility decomposition.

µ′ω∗ − 1

2
ω∗′Σω∗ =

1

2
µ′Σ−1µ− 1

2
λ∗′AΣ−1A′λ∗. (11)

• 1
2
µ′Σ−1µ: expected utility of the unconstrained MVO portfolio.

• −1
2
λ∗′AΣ−1A′λ∗: components attributable to all constraints combined together.

This term can be equivalently written as −1
2
ω′

CSTRΣωCSTR.

A few observations regarding the intuition behind these decompositions are in order.

First, constraints may change the portfolio weights in either direction, because the last term

in (7) can lead to both positive and negative entries.

Second, in the expected return decomposition in (10), if the Lagrange multiplier, or the

shadow cost, for the i-th constraint λi > 0,11 the sign of the marginal contribution of that

10When the optimization problem in (1) contains inequality constraints, the Lagrange multipliers λ∗ ≥ 0
define the shadow prices of the constraints, which satisfy the complementary slackness condition: (bi −
A′

iω
∗)λ∗

i = 0, for i = 1, 2, . . . , J .
11This is always true for constraints that are binding.
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constraint is determined by the sign of −µ′Σ−1Aj, which can be positive in certain cases.

To see that, observe that:

− µ′Σ−1Aj = −|Σ−1µ| · |Aj| · cos θ (12)

where θ is the angle between Σ−1µ (holdings of the MVO portfolio) and Aj (constraint

coefficients). When these two vectors have a negative inner product (that is, they are nega-

tively correlated), cos θ is negative, which implies that the i-th constraint increases expected

returns.

Finally, when constraints are static, they always decrease expected utility relative to the

unconstrained MVO portfolio, as shown by the fact that the last term in (11) is always

negative. In addition, this last term provides an attribution of expected utility to all con-

straints combined together. Unlike the decomposition of the portfolio holdings and expected

return—which both provide a simple linear additive attribution to individual constraints—

the expected utility cannot be decomposed into a linear combination of each constraint

due to the risk term. Nonetheless, there is a clear interpretation of the portfolio holdings

decomposition ωCSTR operating on the covariance matrix Σ.

3.1 Constraints with Information

To extend the framework beyond static constraints, we consider constraints that are poten-

tially correlated with returns. Let the random vector xt ≡ [x1,t · · · xN,t ]
′ be a characteristic

or score associated with each asset at time t. The randomness in x comes from the fact that

these scores may change period by period and, more importantly, may be correlated with rt.

For example, xt can represent a firm’s ESG score, P/E ratio, momentum measure, or even

a proprietary alpha signal at time t. We again omit the subscript t and simply write x in

most cases.

Investors form constraints based on the value of x, and we denote the j-th constraint by

Aj(x). For example, Aj(x) = x corresponds to the factor exposure constraint in (4):

Aj(x)
′ω = bj =⇒ x′ω = bj.

12 (13)

As another example, we consider exclusionary investing based on values of x. If we rank

assets by their values of x, denote by e[k:N ] the unit vector that takes the value 1 only in

the entry corresponding to the k-th ranked asset and zero otherwise, and ω[k:N ] the portfolio

weight of the k-th ranked asset. With this notation, Aj(x) =
(
e[1:N ] · · · e[N−N0:N ]

)′
12In the case of inequality constraints, this becomes x′ω ≥ bj .
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corresponds to exclusionary investing in (3) that only keeps the top N0 assets ranked by x:

Aj(x)
′ω = 0 =⇒ e′[1:N ]ω = 0, · · · , e′[N−N0:N ]ω = 0 =⇒ ω[1:N ] = 0, · · · , ω[N−N0:N ] = 0.

More generally, investors can impose J constraints based on J different characteristics,

which we denote by the vector:

X ≡ [x′
1 x′

2 · · · x′
J ]

′

where xj represents the j-th characteristic that forms the j-th constraint, Aj(xj). We use

the notation:

A(X) =


A′

1(x1)
...

A′
J(xJ)


to denote the J×N coefficient matrix of J constraints that each depend on one characteristic.

We assume the following about the distribution of asset characteristics, X:

Assumption 1. The characteristics Xt are identically distributed over time t = 1, 2, · · · , and
described by the probability distribution function Φ(X). In addition, Xt have finite moments

up to order 2.

Assumption 1 simply requires that Xt are drawn from some well-behaved distribution, and

still allows Xt to be dependent over time.

Investors observe the characteristics X at the time of portfolio construction, but not the

returns r. If constraints are formed from values of X, which may contain information of r,

how can we then attribute portfolio holdings and performance metrics to constraints?

3.2 Attribution with Information

We use r|X to denote the distribution of returns conditioned on information in X, and µX

and ΣX to denote its conditional mean and covariance matrix. We first attribute portfolio

performance metrics conditioned on X. This can be interpreted as a per-period attribution,

because it is a function of the realizations of asset characteristics X in each period. After

that, the overall attribution is simply the expectation with respect to X, which can be

interpreted as the long-run average of the per-period attribution.

Portfolio weights depend on the constraints and therefore X. We still use ω∗ and ωCSTR

to represent the weights of the constrained portfolio and components attributable to con-

straints, but it is worth noting that they are functions of X in the context of random char-

10



acteristics. The following result summarizes the attribution of expected return and utility

due to information in each constraint, conditioned on X.

Proposition 2 (Conditional Attribution with Information). Under Assumption 1 and con-

ditioned on information in X that is used to form constraints A(X), the following decompo-

sitions hold for the optimal portfolio ω∗.

1. Expected return decomposition.

E
[
ω∗′r|X

]
= µ′

Xω
∗ = µ′

XωMVO + µ′ωCSTR + (µ′
X − µ′)ωCSTR, (14)

where

• µ′
XωMVO = µ′

XΣ
−1µ: expected return of the unconstrained MVO portfolio.

• µ′ωCSTR = −µ′Σ−1A(X)′λ∗: components attributable to each constraint treated

as static.

• (µ′
X−µ′)ωCSTR = −(µ′

X−µ′)Σ−1A(X)′λ∗: components attributable to informa-

tion in constraints.13

Here the Lagrange multipliers are given by:

λ∗ =
(
A(X)Σ−1A(X)′

)−1 (
A(X)Σ−1µ− b

)
(15)

provided that the feasible region of the constrained optimization problem is nonempty.14

2. Expected utility decomposition.

µ′
Xω

∗ − 1

2
ω∗′ΣXω

∗ = µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+ (µ′
X − µ′)ωCSTR − ω′

SHR(ΣX −Σ)ωCSTR.

(17)

13This term can be further decomposed into components attributable to each individual constraint under
certain distributional assumptions of X. We discuss this in Section 3.3.

14In the special case of only one constraint, the Lagrange multiplier reduces to:

λ∗ =
A(x)Σ−1µ− b

A(x)Σ−1A(x)′
. (16)

The sign of λ∗ is determined by whether the constraint is binding, i.e., the average characteristic value (e.g.
ESG score) of the unconstrained MVO portfolio subtracted by the constraint threshold b.
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• µ′
XωMVO − 1

2
ω′

MVOΣXωMVO = µ′
XΣ

−1µ − 1
2

(
Σ−1µ

)′
ΣX

(
Σ−1µ

)
: optimal ex-

pected utility of the unconstrained MVO portfolio.

• −1
2
ω′

CSTRΣωCSTR = −1
2
λ∗′A(X)Σ−1A(X)′λ∗: components attributable to all

constraints combined together, treated as static.

• (µ′
X − µ′)ωCSTR − ω′

SHR(ΣX − Σ)ωCSTR = − (µ′
X − µ′)Σ−1A(X)′λ∗ −(

Σ−1µ+ 1
2
Σ−1A(X)′λ∗)′ (ΣX − Σ)Σ−1A(X)′λ∗: component attributable to in-

formation in constraints.15

Here ωSHR is a shrinkage portfolio defined as:

ωSHR ≡ ωMVO +
1

2
ωCSTR = ω∗ − 1

2
ωCSTR. (18)

Proposition 2 provides a decomposition of the expected return and utility into compo-

nents attributable to the unconstrained MVO portfolio, static constraints, and information:

Expected Return or Utility = Unconstrained MVO Portfolio

+ Static Constraint + Information .
(19)

This result is fundamentally different from the traditional constraint attribution given in

Proposition 1, in which the coefficients that form constraints are assumed to be constant.

Once the constraints depend on asset characteristics X that are potentially correlated with

returns, they provide information. Proposition 2 quantifies this effect explicitly by showing

how information contributes to the expected return and utility of a portfolio. The informa-

tion component of the expected return is (µ′
X−µ′)ωCSTR, which implies that the information

contributes positively when portfolio holdings attributable to constraints are positively cor-

related with the excess return vector of all assets, µ′
X − µ′.

The information component of expected utility is (µ′
X−µ′)ωCSTR−ω′

SHR(ΣX−Σ)ωCSTR.

The first part is the same as the information component of the expected return. The second

part corresponds to the information component from the variance, which itself consists of

two terms:

−ωSHR(ΣX −Σ)ωCSTR = −
(
ω′

MVO +
1

2
ω′

CSTR

)
(ΣX −Σ)ωCSTR

= −1

2
ω′

CSTR(ΣX −Σ)ωCSTR − ω′
MVO(ΣX −Σ)ωCSTR.

(20)

15This term can be further decomposed into components attributable to each individual constraint under
certain distributional assumptions of X. We discuss this in Section 3.3.
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The first term corresponds to the excess variance, ΣX − Σ, from portfolio holdings at-

tributable to constraints, ωCSTR. The second term corresponds to an interaction effect

between the unconstrained MVO portfolio, ωMVO, and the component attributable to con-

straints, ωCSTR.

Taken together, (20) can be interpreted as the covariance between the shrinkage portfolio,

ωSHR, and the portfolio attributable to constraints, ωCSTR. However, this covariance is not

with respect to the returns of the original assets, but with respect to a set of hypothetical

assets whose covariance is determined by the negative excess covariance matrix, −(ΣX−Σ).16

Figure 1 demonstrates two representative examples of the shrinkage portfolio, which shrinks

the optimal constrained portfolio ω∗ towards the unconstrained MVO portfolio ωMVO. We

emphasize that the coefficient of the variance term is 1/2 in our expected utility which

corresponds to a specific level of risk aversion. More generally, different levels of risk aversion

correspond to different shrinkage portfolios in (18).

!!"#$

!%&'

!"($

!∗

(a)

!!"#$

!%&'

!"($

!∗

(b)

Figure 1: Illustration of shrinkage portfolios defined in (18). (a) shows an example with an
acute angle between the shrinkage portfolio and the portfolio attributable to constraints. (b)
shows an example with an obtuse angle between the shrinkage portfolio and the portfolio
attributable to constraints.

It is important to note that the results in Proposition 2 are conditional on X. To

obtain an unconditional decomposition over multiple time periods, we must compute the

expectation of (14) and (17) with respect to X. This does not change the decompositions in

Proposition 2 because they are linear, and the unconditional expected return and utility are

simple generalizations of the decompositions conditioned on X. Nonetheless, we summarize

the unconditional results formally.

Proposition 3 (Attribution with Information). Under Assumption 1, the unconditional

expected return and utility can be decomposed into components that are attributable to the

unconstrained MVO portfolio, static constraints, and information, respectively.

16To see this, imagine a set of N hypothetical assets whose returns, s, have a covariance matrix Σ−ΣX.
We have Cov (ω′

SHRs,ω
′
CSTRs) = ω′

SHRCov(s, s)ωCSTR = ω′
SHR (Σ−ΣX)ωCSTR. We show in Section 3.3

and Appendix B.1 that Σ−ΣX is always positive semi-definite under certain distributional assumptions of
r and X.
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1. Expected return decomposition.

E
[
ω∗′r

]
= µ′ωMVO + µ′E [ωCSTR] + E [(µ′

X − µ′)ωCSTR] . (21)

2. Expected utility decomposition.

E
[
ω∗′r

]
− 1

2
Var

(
ω∗′r

)
= µ′ωMVO − 1

2
ω′

MVOΣωMVO

− 1

2
E [ω′

CSTRΣωCSTR]

+ E [(µ′
X − µ′)ωCSTR − ω′

SHR(ΣX −Σ)ωCSTR]

− 1

2
(Var (ω′

CSTRµX) + 2Cov (ω′
MVOµX,ω

′
CSTRµX)) .

(22)

3.3 Decomposing Information with Normally Distributed Returns

The attribution in Proposition 2 depends critically on two terms, (µX − µ) and (ΣX −Σ),

which capture the excess return and covariance due to information in X. They cannot

be simplified further for general distributions of r and X. However, in the special case of

conditional normality and independent characteristics, we can decompose these terms further

and obtain considerable intuition about their contribution.

Assumption 2. The joint distribution of the return vector r and characteristics X =

[x′
1 x′

2 · · · x′
J ]

′ satisfies the following conditions.

1. The return and asset characteristics, (r′,x′
1, . . . ,x

′
J), are jointly normally distributed.

2. The return vector is homoskedastic with variance σr.

3. Each characteristic is homoskedastic with variance σxj
for j = 1, 2, . . . , J .

4. The characteristic values are independent both across different assets and between the

J different constraints.

5. For the j-th constraint, there is a homogeneous correlation between the return and

characteristic value of each asset, and there is no cross-correlation between the return

and characteristic value of different assets. In other words, the covariance between

returns r and characteristics xj is given by

Cov(r,xj) = ρjσrσxj
I

where I is the identity matrix.
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We make a few remarks about Assumption 2. First, although results in this section are

derived under joint normality of Assumption 2.1, we provide a generalization in Section 4.2

when asset characteristics x are binary-valued Bernoulli random variables, which is useful for

capturing exclusionary investing based on binary labels, such as the industry of a company.

Second, Assumption 2.2 specifies homoskedastic asset returns, which are more suitable

for residual returns in excess of a particular asset-pricing model. Our empirical analysis in

Section 5 analyzes the residual returns in excess of the Fama-French five-factor model.

Third, Assumption 2.4 asserts that multiple asset characteristics are independent of each

other, which makes it possible to decompose the contribution from each constraint in math-

ematically simple forms (see Propositions 4–5). More generally, when characteristics are

dependent, a similar decomposition is still possible in a rotated space that orthogonalizes X,

rather than the original space of X.

Finally, Assumption 2.5 specifies that, given a particular constraint, the correlation be-

tween the return and characteristic value of the i-th asset, Corr(ri, xi) = ρ, is a constant

for i = 1, 2, . . . , N , and there are no cross-correlations between ri and xj when i ̸= j. It is

worth noting, though, that the returns r are allowed to be dependent cross-sectionally. This

assumption was first used in Lo and MacKinlay (1990) to describe cross-sectional estimation

errors of intercepts in CAPM regressions, and later in Lo and Zhang (2023) to describe the

dependence structure between returns and an impact factor such as ESG.

We emphasize that Assumptions 2.2, 2.3, and 2.5 are imposed to allow for a more intuitive

explanation of the attribution results below. All our results remain valid, albeit with more

complicated mathematical expressions, when returns and characteristics are allowed to be

dependent in more general forms. We choose to present more intuitive results using stronger

assumptions, and provide the general results in the Appendix. Nevertheless, none of our

empirical results in Section 5 relies on these assumptions and our attribution framework can

easily be carried out numerically under general distributional assumptions.

Given Assumption 2, the covariance matrix of [ r′ x′
1 · · · x′

J ] can be written as:

Σ ρ1σrσx1I · · · ρJσrσxJ
I

ρ1σrσx1I
...

ρJσrσxJ
I


σ2
x1
I 0 0

0
. . . 0

0 0 σ2
xJ
I




. (23)

Recall that X represents the (NJ×1)-dimensional vector [x′
1 · · · x′

J ]
′, and we use ν ≡

[ν ′
1 · · · ν ′

J ]
′ to denote the expected value of X. The following result characterizes the
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excess return and covariance due to the information in X.

Proposition 4 (Information Decomposition). Under Assumptions 1 and 2, r|X is normally

distributed, with an expected value given by:

µX = E[r|X] = µ+
J∑

j=1

ρjσr
(xj − νj)

σxj

, (24)

and a covariance matrix given by:

ΣX = Cov(r|X) = Σ−
J∑

j=1

ρ2jσ
2
rI. (25)

Proposition 4 provides a decomposition of the excess return and excess covariance due

to information into contributions from each of the J constraints. It also allows for more

explicit decompositions of the expected return and utility of the constrained portfolio by

substituting (24)–(25) into Proposition 2, which we summarize below.

Proposition 5 (Attribution with Normally Distributed Returns). Under Assumptions 1 and

2 and conditioned on information in X that is used to form constraints A(X), the following

decompositions hold for the optimal portfolio ω∗.

1. Expected return decomposition.

E
[
ω∗′r|X

]
= µ′

Xω
∗ = µ′

XωMVO + µ′ωCSTR +
J∑

j=1

ρjσr

(x′
j − ν ′

j)ωCSTR

σxj

, (26)

where the Lagrange multipliers are given by (15) provided that the feasible region of the

constrained optimization problem is nonempty.

• µ′
XωMVO: expected return of the unconstrained MVO portfolio.

• µ′ωCSTR: components attributable to each constraint treated as static.

• ρjσr
(x′

j−ν′
j)ω

∗

σxj
: component attributable to information in the j-th constraint.

2. Expected utility decomposition.

µ′
Xω

∗ − 1

2
ω∗′ΣXω

∗ = µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+
J∑

j=1

(
ρjσr

(x′
j − ν ′

j)ωCSTR

σxj

+ ρ2jσ
2
rω

′
SHRωCSTR

)
.

(27)
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• µ′
XωMVO − 1

2
ω′

MVOΣXωMVO: optimal expected utility of the unconstrained MVO

portfolio.

• −1
2
ω′

CSTRΣωCSTR: components attributable to all constraints combined together,

treated as static.

• ρjσr
(x′

j−ν′
j)ωCSTR

σxj
+ ρ2jσ

2
rω

′
SHRωCSTR: component attributable to information in the

j-th constraint.

Furthermore, the unconditional expected return and utility can be decomposed into compo-

nents that are attributable to the unconstrained MVO portfolio, static constraints, and infor-

mation, respectively, by following Proposition 3.

The last term of (26) (see also (24)) shows that the excess expected return, µX − µ,

is linear in x. More importantly, it is determined by three terms. The first term, ρj,

determines the correlation between asset characteristics and returns. The second term, σr,

measures the standard deviation of returns, i.e., opportunity in the market. The third

term, (xj − νj)/σxj
, determines whether each asset’s characteristic value is above or below

the average characteristic value, much like a z-score. When the asset characteristics are

positively correlated with returns, those assets with above-average characteristic values have

positive excess returns. When the asset characteristics are negatively correlated with returns,

those assets with below-average characteristic values have positive excess returns.

The last term of (27) (see also (25)) shows that the excess covariance, (ΣX−Σ), is always

negative. In other words, when ω′
SHRωCSTR > 0, i.e., the shrinkage portfolio holdings and the

holdings attributable to constraints are positively correlated, incorporating information in

X always reduces the variance and improves the expected utility of a portfolio. In addition,

the magnitude of reduction in variance due to the j-th constraint depends on ρ2j , the squared

correlation between the j-th asset characteristics and returns. The constraints with a larger

magnitude of correlation lead to larger reductions in variance. On the other hand, when

the shrinkage portfolio holdings and the holdings attributable to constraints are negatively

correlated, incorporating information in X increases the variance and reduces the expected

utility of a portfolio. These two scenarios correspond to the two cases in Figure 1 respectively.

3.4 Ex Post Return Attribution

Propositions 2–5 provide a theoretical framework to decompose expected returns. In practice,

investors can also use this framework to decompose realized returns ex post, as we show in

this section.

17



We use an (N×1)-vector r̃ to represent the realized returns of all assets. The goal for

ex post attribution is to decompose the realized portfolio return, r̃′ω∗, into components

attributable to the unconstrained MVO portfolio and each constraint.

If we treat constraints as static, (10) in Proposition 1 already provides such a decompo-

sition as long as the ex ante expected returns are replaced by ex post realized returns:

r̃′ω∗ = r̃′Σ−1µ− r̃′Σ−1A′λ∗. (28)

• r̃′Σ−1µ: realized return that the unconstrained MVO portfolio would have achieved.

• −r̃′Σ−1A′λ∗: realized return attributable to constraints.

However, this decomposition does not account for the information contained in each

constraint. Equation (24) in Proposition 4 quantifies the excess return due to information,

and we use the sample version of this decomposition to quantify realized returns attributable

to information:

r̃Info =
J∑

j=1

ρ(r̃, x̃j)σ̃r(x̃j − ν̃j)

σ̃xj

. (29)

We can therefore define the static returns as r̃Static ≡ r̃ − r̃Info. This leads to the following

decomposition of realized portfolio returns.

Proposition 6 (Ex Post Return Attribution). Under Assumptions 1 and 2, realized portfolio

returns can be decomposed into:

r̃′ω∗ = r̃′ωMVO + r̃′StaticωCSTR +
J∑

j=1

ρ(r̃, x̃j)σ̃r

(x̃′
j − ν̃ ′

j)ωCSTR

σ̃xj

. (30)

• r̃′ωMVO = r̃′Σ−1µ: realized return of the unconstrained MVO portfolio.

• r̃′StaticωCSTR = −r̃′StaticΣ
−1A′λ∗: realized return attributable to constraints treated as

static.

• ρ(r̃, x̃j)σ̃r
(x̃′

j−ν̃′
j)ωCSTR

σ̃xj
= −ρ(r̃, x̃j)σ̃r

(x̃′
j−ν̃′

j)Σ
−1A′λ∗

σ̃xj
: realized return attributable to in-

formation in the j-th constraint.

It is worth noting that in the last term of (30), the information component contains

two terms. The first term reflects the correlation of each characteristic with returns, which

captures the information content of each characteristic. The second term reflects the portfolio

holdings attributable to each constraint, which captures how information is realized into

actual returns. As a result, there are interactions from the information contained in each
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constraint with the portfolio holdings attributable to other constraints. Together, they

determine the information contribution to the realized returns.

4 Common Examples of Portfolio Constraints

In this section, we apply the results in Section 3 and consider two common examples of

portfolio constraints: factor exposures and exclusions. We derive additional analytical results

for these special types of constraints and provide simulations to illustrate the attribution of

expected returns.

4.1 Factor Exposure

A common constraint in portfolio construction arises when investors wish to control the

average value of a characteristic or the exposure to a certain factor, such as the average

ESG score, market capitalization, beta, or book-to-market values of the portfolio. This

corresponds to A(x) = x′ in (13).

We consider the case of one single constraint A(x) = x′ for simplicity, and focus on the

last term in (26) of Proposition 5 that corresponds to the information component. Given a

scalar Lagrange multiplier as in (16), we have the following result.

Proposition 7 (Factor Exposure). Under Assumptions 1 and 2, and assuming without loss

of generality that the cross-sectional average factor value ν = 0, the expected return of the

optimal portfolio with a factor exposure constraint can be decomposed into:

E
[
ω∗′r|x

]
= µ′

XΣ
−1µ+

x′Σ−1µ

x′Σ−1x

(
b− x′Σ−1µ

)
+

ρσr

σx

(
b− x′Σ−1µ

)
, (31)

if the constraint is binding. In the case of a non-binding inequality constraint, the Lagrange

multiplier λ∗ = 0, and (31) reduces to: E [ω∗′r|x] = µ′
XΣ

−1µ.

Proposition 7 provides the same decomposition of expected returns into three components

as in Proposition 5, except that the last term attributable to information has a much simpler

form. First of all, there is no information contribution when the constraint is not binding in

the case of an inequality constraint.

When the constraint is binding, the information component depends on the correlation ρ

between returns and asset characteristics. In addition, note that x′Σ−1µ is the characteristic

value of the unconstrained MVO portfolio. Therefore b− x′Σ−1µ measures the constrained

characteristic value b relative to the unconstrained MVO portfolio. For example, if a par-

ticular asset characteristic, such as ESG, is positively correlated with returns (ρ > 0), a
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positive desired ESG level relative to the unconstrained MVO portfolio (b − x′Σ−1µ > 0)

adds value to expected returns. On the other hand, if ESG is negatively correlated with

returns (ρ < 0), the same constraint will hurt expected returns. This intuition holds true for

any asset characteristic such as value, size, or measures of momentum, as well as denizens of

the “factor zoo” described in the recent literature (Harvey, Liu, and Zhu, 2016; Feng, Giglio,

and Xiu, 2020; Hou, Xue, and Zhang, 2020).

Simulation. We consider a world with 10 assets whose expected return µ = [µ1 · · · µ10 ]
′

and covariance matrix Σ = (σi,j)10×10 are randomly generated in the following way:

µi ∼ N(0.05, 0.052), for i = 1, 2, . . . , 10 (32a)

σi,i ∼ U [0, 0.01], for i = 1, 2, . . . , 10 (32b)

σi,j ∼ U [0, 0.001], for i, j = 1, 2, . . . , 10 and i ̸= j (32c)

where N and U denote the normal and uniform distributions, respectively. Investors solve

the following optimization problem with two constraints on factor exposures:

max
ω

ω′µ− 1

2
ω′Σω

s.t. ω′x ≥ 0.5

ω′y ≥ 0.5.

(33)

Here, x and y represent two asset characteristics such as an ESG score and a return-

momentum. They are both 10-dimensional N(0, 1) random vectors that are independently

and identically distributed (IID) over time. We denote the correlations between asset returns

and these two asset characteristics by

ρ1 ≡ Corr(xi, ri) and ρ2 ≡ Corr(yi, ri), for i = 1, 2, . . . , 10.

As ρ1 and ρ2 vary between −0.8 and 0.8, Figure 2 demonstrates the attribution of ex-

pected returns following Proposition 7. Figure 2a shows the expected return of the con-

strained portfolio, which varies between 1.6 to as high as 3.0 as ρ1 and ρ2 vary between −0.8

and 0.8. Figure 2b shows the expected return of the unconstrained MVO problem, which is

a constant value around 2.5 regardless of values of ρ1 and ρ2.

The source of the difference in expected returns between the unconstrained MVO and the

constrained portfolio becomes clear in Figures 2c–2f. Figures 2c and 2d show the expected

returns attributable to the two constraints, respectively, as if they are static. They each
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(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint 1 (Static) (d) Decomposition: Constraint 2 (Static)

(e) Decomposition: Constraint 1 (Information) (f) Decomposition: Constraint 2 (Information)

Figure 2: Decomposition of expected return for (33) with two constraints which depend
on random characteristics, as correlations (ρ1 and ρ2) between random characteristics and
asset returns vary. The expected return of the constrained portfolio (a) is decomposed into
components corresponding to the unconstrained MVO portfolio (b), static constraints (c–d),
and information in the constraints (e–f).
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contribute to the expected returns with a negative constant value of around −0.1. Figure 2e

shows the expected returns attributable to information in the first constraint, which increase

as ρ1 increases but remain constant as ρ2 varies. Similarly, Figure 2f shows the expected

returns attributable to information in the second constraint, which increase as ρ2 increases

but remain constant as ρ1 varies.

Similarly, Figure 3 demonstrates the attribution for expected utility. Figure 3a shows the

expected utility of the constrained portfolio, which varies between 0.8 to as high as 2.2 as ρ1

and ρ2 vary between −0.8 and 0.8. Figure 3b shows the expected utility of the unconstrained

MVO problem, which is around 1.25 regardless of values of ρ1 and ρ2. When ρ1 and ρ2 are

high, the expected utility of the constrained portfolio can actually be higher than that of

the unconstrained portfolio.

(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint (Static) (d) Decomposition: Constraint (Information)

Figure 3: Decomposition of expected utility for (33) with two constraints which depend
on random characteristics, as correlations (ρ1 and ρ2) between random characteristics and
asset returns vary. The expected utility of the constrained portfolio (a) is decomposed into
components corresponding to the unconstrained MVO portfolio (b), static constraints (c),
and information in the constraints (d).
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The difference in expected utility between the unconstrained MVO and the constrained

portfolio is decomposed into the static and information components, respectively. Figure 3c

shows the expected utility attributable to the two constraints as if they are static, which

contributes to the expected utility with a negative constant value of around −0.1. Figure

3d shows the expected utility attributable to information, which is negative in most regions

marked by dark blue. As both ρ1 and ρ2 increase, the expected utility contribution from

information increases.

Overall, these results demonstrate how to understand the expected return and utility of

a constrained portfolio by decomposing them into an unconstrained MVO portfolio, static

constraints, and information in each constraint. In particular, when the information in

constraints is sufficiently positively correlated with returns, they can lead to higher expected

returns and utilities for the constrained portfolio.

4.2 Exclusionary Investing

Another common form of constraint in portfolio construction is the exclusionary constraint,

where certain assets are excluded from the portfolio based on certain criteria such as a

minimum level of ESG scores, or whether the firm belongs to a particular industry. Without

loss of generality, suppose the j-th asset is excluded based on a characteristic x.

For convenience, we introduce some new notation. We rank securities by x, and use

the notation x1:N < x2:N < xN :N to denote the ranked values of x, also known as “order

statistics” in the statistics literature. We then denote by r[i:N ] the return associated with the

i-th order statistic xi:N . This return is called the i-th induced order statistic to emphasize

the fact that its ranking is determined not by its own value but by the value of x.17 For

simplicity, we also use the subscript “[N ]” to denote a vector or a matrix that is reordered

based on values of x. For example, ω[N ] represents the vector of weights for assets that are

reordered based on values of x.

Investors solve the following optimization problem in which the top N0 assets ranked by

x are allowed to enter the portfolio, while the bottom N −N0 assets are excluded:

min
ω[N ]

ω′
[N ]µ[N ] −

1

2
ω′

[N ]Σ[N ]ω[N ]

s.t. ω[i:N ] = 0 for i ≤ N −N0.

(34)

The optimal portfolio for (34) is simply the optimal portfolio restricted to N0 assets. There-

17The term was coined by Bhattacharya (1974). These indirectly ranked statistics are also referred to as
concomitants of the order statistic xi:N (David, 1973).
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fore, the optimal portfolio weights are given by ω∗
N0

= Σ−1
N0
µN0

.

If x is a vector of continuous random variables, the expected return of the optimal

portfolio with an exclusionary constraint can be decomposed by (26) in Proposition 5. If

x is a vector of binary random variables, as is the case for exclusion based on industry or

“sin stock” labels, the following result provides a more intuitive form of attribution for the

expected return of this portfolio.

Proposition 8 (Exclusion based on Binary Characteristic). Under Assumptions 1 and 2,

if x is a vector of binary random variables and xi follows a Bernoulli distribution, the ex-

pected return of the optimal portfolio with an exclusionary constraint found in (34) can be

decomposed into:

E
[
ω∗′r|x

]
= µ′

x,N0
ω∗

N0
= µ′

xωMVO + µ′ωCSTR + ρσr (x⊙ u− (1− x)⊙ v)′ ωCSTR (35)

where

u =

(√
πx1=0

πx1=1

, . . . ,

√
πxN=0

πxN=1

)′

and v =

(√
πx1=1

πx1=0

, . . . ,

√
πxN=1

πxN=0

)′

.

are two vectors of the odds ratio (that is, the relative chance) of each asset being excluded

from the portfolio.

Proposition 8 shows that the component attributable to information depends on the cor-

relation ρ between asset returns and characteristics x, and the chance of being excluded

from the portfolio,
πxi=0

πxi=1
. It is worth emphasizing that, in broad terms, the excess return

attributable to information has two different interpretations. On the one hand, when x corre-

sponds to characteristics such as ESG, size, or the book-to-market of a firm, the excess return

represents the conditional return premium from the information in these characteristics. On

the other hand, the excess return can also represent an investor’s ex ante expectation of

asset returns going forward.

A concrete example is so-called “stranded” assets such as fossil fuels. These assets may

have had acceptable returns in the past, but “green” investors may believe that they will be

subject to lower returns in the future which will be reflected in a decomposition of portfolio

performance according to their beliefs about their future expected returns.

Simulation. We consider a world with 10 assets whose expected return µ and covariance

matrix Σ are given in the same way as in (32)–(32). Investors solve the following problem:

max
ω

ω′µ− 1

2
ω′Σω

s.t. ω[i:10] = 0, for i ≤ N −N0 assets ordered by x.
(36)
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Here, x represents the asset characteristic (such as ESG score) that is used to exclude assets,

a 10-dimensional N(0, 1) random vector that is IID over time. We denote the correlations

of the asset characteristics with returns by

ρ ≡ Corr(xi, ri), for i = 1, 2, . . . , 10.

As ρ varies between −0.8 and 0.8 and the number of excluded assets varies between 1

and 9, Figure 4 demonstrates the attribution of expected returns following Proposition 8.

Figure 4a shows the expected return of the constrained problem, which varies between −0.2

to as high as 3.0 as ρ and the number of excluded assets vary. Figure 4b shows the expected

return of the unconstrained MVO portfolio, which has a constant value of around 2.5.

(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint (Static) (d) Decomposition: Constraint (Information)

Figure 4: Decomposition of expected return for problem (36) with one exclusionary
constraint which depends on random characteristics, as the number of excluded assets
(nExclude) and the correlation (ρ) between the random characteristic and asset returns
vary. The expected return of the constrained portfolio (a) is decomposed into components
corresponding to the unconstrained MVO portfolio (b), static constraints (c), and informa-
tion in the constraints (d).
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The source of the difference in expected returns between the unconstrained MVO and

the constrained portfolio becomes clear in Figures 4c–4d. Figure 4c shows the expected

returns attributable to the constraints as if they are static. As more assets are excluded, the

contributions from the static constraints also increase. However, this component remains

unchanged as the correlation ρ varies.

Figure 4d shows the expected returns attributable to the information in the constraint,

which increase as ρ increases. In addition, this result highlights a trade-off when a greater

number of assets are excluded. On the one hand, when the correlation ρ is nonzero, excluding

more assets implies that only assets with positive or negative returns are included in the

portfolio. On the other hand, excluding too many assets allows the portfolio too little choice

in the universe of available assets. As a result, the highest returns are achieved when an

intermediate number of assets are excluded, given a positive correlation ρ, and similarly,

the lowest returns are achieved with an intermediate number of assets given a negative

correlation. These results are consistent with Proposition 8.

Similarly, Figure 5 demonstrates the attribution for expected utility. Figure 5a shows

the expected utility of the constrained portfolio, which varies between -0.5 to 2.0 as ρ1 and

ρ2 vary between −0.8 and 0.8. Figure 5b shows the expected utility of the unconstrained

MVO problem, which is again around 1.25 regardless of values of ρ1 and ρ2.

The difference in expected utility between the unconstrained MVO and the constrained

portfolio is decomposed into the static and information components, respectively. Figure 5c

shows the expected utility attributable to the exclusionary constraints as if they are static,

which contributes to the expected utility negatively, ranging from −1.0 to −0.2. Figure 5d

shows the expected utility attributable to information, which increases as ρ increases, and

has a similar pattern to Figure 4d.

Overall, these results demonstrate how to understand the expected return and utility of

an exclusionary portfolio by decomposing them into an unconstrained MVO portfolio, static

constraints, and information in each constraint.

5 Empirical Analysis

In this section, we apply our attribution framework to real-world datasets, and consider two

examples where constraints are applied in portfolio construction: ESG investing in which

the average portfolio ESG score is required to be above a certain threshold, and exclusionary

investing of sin stocks and stranded assets.
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(a) Constrained Optimum (b) Unconstrained MVO

(c) Decomposition: Constraint (Static) (d) Decomposition: Constraint (Information)

Figure 5: Decomposition of expected utility for problem (36) with one exclusionary constraint
which depends on random characteristics, as the number of excluded assets (nExclude) and
the correlation (ρ) between the random characteristic and asset returns vary. The expected
utility of the constrained portfolio (a) is decomposed into components corresponding to the
unconstrained MVO portfolio (b), static constraints (c), and information in the constraints
(d).
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5.1 Data

Returns. We obtain daily return data for all U.S. stocks from 2001 to 2020 from the Center

for Research in Security Prices (CRSP) at the Wharton Research Data Services (WRDS).

The CRSP dataset also contains basic firm characteristics such as market capitalization. We

obtain the daily Fama-French factor data from Kenneth French’s website.18

Because the ESG data is updated annually, we require that a stock has at least five

years of valid return data to be included in our analysis. For each stock, we estimate a

Fama-French five-factor model (Fama and French, 2015) based on daily returns:

Ri,t = αi + βi,1(RM,t −Rf,t) + βi,2SMBt + βi,3HMLt + βi,5RMWt + βi,6CMAt + ϵi,t. (37)

We use the residual returns:

ri,t ≡ αi + ϵi,t, (38)

winsorized at 2.5% on both sides, as the main target of interest in our analysis. We summarize

the residual returns annually to match the frequency of the ESG data.

ESG. We use the MSCI KLD ESG dataset which contains environmental, social, and gov-

ernance ratings of large publicly traded companies from 2003 to 2018. This database contains

yearly ratings on roughly the 3,000 largest U.S. companies, and has been used in numerous

studies examining the effect of ESG ratings on firm performance.19 The raw ESG data classi-

fies environmental, social, and governance performance into 13 different categories, including

seven qualitative categories (community, diversity, employee relations, environment, human

rights, product) and six controversial-business categories (alcohol, gambling, firearms, mili-

tary, nuclear, tobacco, and corporate governance). The raw data rates each firm in terms of

both strength and concern in the seven qualitative categories, and only in terms of concern

in the six controversial-business categories.

We follow Lins, Servaes, and Tamayo (2017) in aggregating the raw data into an ESG

score. First, we mark all missing ratings as zero. As the maximum number of strengths

and concerns for any given category will vary over time, we scale them for each category by

dividing the number of strengths or concerns for each firm-year by the maximum number of

strengths or concerns possible for that category in that year. This procedure yields strength

and concern indices that range from zero to one for each category-year. Our measure in

18See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Accessed
20 July, 2022.

19See, for example, Hong and Kostovetsky (2012), Deng, Kang, and Low (2013), Krüger (2015), and
Borisov, Goldman, and Gupta (2016), Lins, Servaes, and Tamayo (2017), and Berg, Koelbel, and Rigobon
(2022).
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each category-year is then obtained by subtracting the concerns index from the strengths

index. The net score per category therefore ranges from −1 to +1. Finally, to obtain the

aggregated ESG score of a firm, we combine the net score for seven qualitative categories,

which leads to a final score that ranges from −7 to +7.20

We provide basic descriptive statistics of the ESG score in Section 5.2.

Sin Stocks and Energy Stocks. The CRSP data contains several basic firm charac-

teristics, including the industry classification of the firm. We complement the CRSP data

with the Compustat Historical Segment data, which also contains industry classification

information for the different segments of a company in the U.S.

We follow Hong and Kacperczyk (2009) in identifying sin stocks as those with SIC codes

2100–2199 belong to the alcohol group, and those with SIC codes 2080–2085 are in the

tobacco group. In addition, we identify gaming stocks as those with the following NAICS

codes: 7132, 71312, 713210, 71329, 713290, 72112, and 721120. We then augment this list

by searching across companies at the company segment level using the Compustat Segments

data, identifying a company as a sin stock if any of its segments has an SIC code in either

the alcohol or the tobacco group, or an NAICS code in the gaming group, as defined above.

Accordingly, our final list of sin stocks is the union of these two screening procedures.

In addition, there is a growing literature on the effects of excluding stranded assets such

as energy stocks (Bohn, Goldberg, and Ulucam, 2022). Therefore, we add energy stocks to

the list of assets excluded in portfolio construction, and follow Bohn, Goldberg, and Ulucam

(2022) in identifying energy stocks as those with SIC codes 1000–1519.

We provide basic descriptive statistics of the final list of excluded firms in Section 5.3.

5.2 ESG Constraints

We merge the CRSP dataset with the MSCI KLD ESG dataset. Table 1 shows, for each

year, the number of firms in our dataset, the summary statistics of its annualized residual

returns, and the summary statistics of the aggregate ESG score we construct lagged by one

year. In general, we have around 1,800 stocks each year in our sample period.

Table 2 shows the cross-sectional correlations between the residual returns and ESG

scores lagged by zero to four years, averaged over all years in our sample. When ESG scores

are compared with residual returns in the same year (lag 0), there is a −2.98% correlation.

20We follow Lins, Servaes, and Tamayo (2017) in excluding the six controversial-business categories. Lins,
Servaes, and Tamayo (2017) use only the first five qualitative categories because they consider the other
categories irrelevant for their purposes of corporate social responsibility. However, we choose to include
those ratings that correspond to human rights and product.
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However, this correlation is not realizable in actual portfolios, since the ESG scores are not

released at the start of the year. When ESG scores lag by one to four years, there is a slight

increase in the correlation. We use the ESG scores lagged by one year as our main measure

to construct annually rebalanced portfolios.

Table 1: Summary statistics of the annualized residual returns (in percentage) from the
Fama-French five-factor model and the aggregate ESG score lagged by one year.

Year #Firms Annualized Residual Return (%) ESG (lag one year)
mean std min 25% 50% 75% max mean std min 25% 50% 75% max

2004 1876 0.7 25.9 -87.6 -15.8 -0.7 13.9 172.5 -0.1 0.5 -3.4 -0.3 0.0 0.1 2.9
2005 1916 1.3 28.2 -93.6 -16.3 -1.5 15.6 164.9 -0.1 0.7 -3.0 -0.6 -0.2 0.2 2.2
2006 1734 0.9 26.7 -78.3 -15.1 -2.0 13.3 171.1 -0.3 0.6 -3.3 -0.5 -0.2 0.0 2.5
2007 1682 5.6 38.1 -80.7 -17.5 1.3 22.1 321.5 -0.3 0.6 -3.7 -0.7 -0.2 0.0 3.0
2008 1721 3.3 44.9 -92.2 -25.7 -1.3 27.8 497.2 -0.3 0.6 -3.5 -0.7 -0.3 0.0 3.4
2009 1785 1.5 38.2 -88.8 -21.7 -2.9 19.4 290.5 -0.3 0.6 -3.6 -0.7 -0.3 0.0 2.8
2010 1776 0.7 28.4 -87.1 -17.1 -2.2 14.6 174.1 -0.3 0.6 -3.5 -0.7 -0.3 0.0 2.8
2011 1896 -0.4 28.3 -92.3 -17.6 0.4 16.2 165.8 -0.4 0.6 -2.8 -0.7 -0.6 -0.1 3.9
2012 1809 -0.5 27.7 -82.3 -15.1 -2.9 10.8 297.0 -0.5 0.8 -2.7 -0.9 -0.6 -0.2 4.2
2013 1785 -0.9 27.7 -89.9 -17.4 -3.6 12.0 302.6 0.1 0.7 -2.3 -0.3 0.0 0.5 3.8
2014 1845 -0.1 24.0 -81.9 -13.7 -0.7 13.6 142.1 0.1 0.7 -2.4 -0.3 0.0 0.3 3.2
2015 1603 2.0 27.4 -91.4 -15.1 2.9 18.7 148.9 0.1 0.5 -3.7 0.0 0.0 0.3 3.2
2016 1708 -1.3 25.1 -82.7 -16.4 -2.5 11.5 201.5 0.2 0.6 -2.6 -0.1 0.0 0.5 3.3
2017 1687 1.0 24.7 -79.5 -13.5 -0.6 13.0 153.4 0.1 0.7 -2.4 -0.1 0.1 0.5 3.1
2018 1838 3.6 27.8 -71.1 -14.2 1.8 18.0 158.7 0.2 0.7 -2.9 0.0 0.2 0.5 4.1
2019 1898 5.4 29.4 -69.8 -9.8 4.4 17.9 585.6 0.6 0.8 -2.3 0.1 0.5 1.0 4.7

Table 2: Average cross-sectional correlation between residual returns and lagged values of
ESG scores.

Lag (ESG Score) 4 3 2 1 0

Correlation 0.97% 0.01% -0.89% -1.95% -2.98%

Figure 6 shows the year-over-year cross-sectional correlations between the residual returns

and lag-1 ESG scores.21 The correlations are generally negative before 2010, implying that

high ESG stocks on average delivered lower excess returns relative to the Fama-French five-

factor model, consistent with equilibrium theories of ESG returns (Pástor, Stambaugh, and

Taylor, 2021; Pedersen, Fitzgibbons, and Pomorski, 2021). After 2011, the correlations

fluctuate around zero, and are positive in certain years, reflecting increasing attention toward

ESG and climate-related issues, an effect consistent with Pástor, Stambaugh, and Taylor’s

(2022) and Lo, Zhang, and Zhao’s (2022) findings.

21The ESG scores are available from 2003 to 2018, and the correlations are necessarily computed from
2004 to 2019.
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Figure 6: Cross-sectional correlations between asset returns and lag-1 ESG scores each year.

We emphasize that our intention is not to find the best ESG score or to provide a com-

prehensive study of whether ESG delivers positive or negative excess returns. In fact, Berg,

Koelbel, and Rigobon (2022) and Berg et al. (2023) show that there exists substantial noise

in ESG measures, and ESG scores from different data providers may lead to very different

correlations. What we hope to demonstrate is that, given any ESG score, it is possible to

attribute portfolio performance metrics to different constraints and to the information in

those constraints.

Portfolio Construction. We consider investors who construct long/short portfolios each

year by solving the following problem.

max
ω

ω′µ− η

2
ω′Σω

s.t. ω′1 = 1

ω′xESG ≥ b.

(39)

The first constraint guarantees that the portfolio is fully invested and can therefore be

compared across different configurations of the constraint. The second constraint imposes a

minimum level of portfolio ESG score, and we set b = 1 to use as an example in our analysis.

We choose η such that the unconstrained MVO portfolio has a realistic leverage.

To construct these portfolios, investors need an estimate of the expected residual return

µ and the covariance matrix of the residual returns Σ each year. We assume that investors
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have access to the following estimator:

µ̂i,t = pri,t + (1− p)zi,t, i = 1, 2, . . . , N

Σ̂t = pΣt + (1− p)σ̄2I
(40)

where ri,t is the average residual return from the Fama-French five-factor model of the i-th

stock,22 zi,t ∼ N
(
0, (0.1× σ̄t)

2) is white noise, Σt is the sample covariance matrix estimated

from the residuals in year t, σ̄2
t is the cross-sectional average residual variance in year t, and σ̄

is the annualized cross-sectional average residual variance over all years. The key parameter

p ∈ [0, 1] controls the level of look-ahead information the investor has. For most of our

analysis below, we set p = 0, which corresponds to an investor with no information about

expected returns in the future. We also consider an example of p > 0, where the estimators

can be interpreted as a certain degree of return predictability.

Portfolio Holdings Decomposition. Combining (39) and (40), we can solve for the

optimal constrained portfolio. Figures 7a and 7b show the bottom and top 100 assets with

the lowest and highest portfolio weights for the optimal portfolio, respectively, averaged

over all years. We decompose the portfolio weights into components corresponding to the

unconstrained MVO portfolio and two constraints, based on (7) in Proposition 1. In both the

top and bottom assets, the full investment constraint (orange) unanimously gives positive

weights.

For the bottom 100 assets in Figure 7a, the unconstrained MVO portfolio (blue) generally

leads to negative weights, and the ESG constraint (green) further adds to the negative

portfolio holdings. Overall, these assets tend to have low ESG scores, and are therefore

assigned the lowest weights in the portfolio. In contrast, for the top 100 assets in Figure

7b, the unconstrained MVO portfolio (blue) generally gives positive weights and the ESG

constraint (green) leads to additional positive weights.

Expected Return and Utility Decomposition. Figure 8 demonstrates the decomposi-

tion of the expected return and utility of the portfolio into different components. The upper

panel of Figure 8a shows that the expected utility of the optimal portfolio is generally nega-

tive in the first half of our sample period, and starts to turn positive towards the second half.

This expected utility is decomposed into three components in the lower panel using (27) in

Proposition 5. The expected utility of the unconstrained MVO portfolio (blue) is positive

over the 16 years in our sample. As the conventional wisdom of constrained optimization

22We estimate this by taking the average of the actual residuals (38) over year t

32



(a) Bottom assets with the lowest weights.

(b) Top assets with the highest weights.

Figure 7: Average portfolio weights over all years and their decomposition, for the long/short
portfolio defined in (39) with a constraint on the average portfolio characteristic value
(ω′xESG ≥ 1.0). (a) shows the bottom assets with the lowest weights and (b) shows the
top assets with the highest weights. In each subfigure, the top panel shows the portfolio
weights (%) of the constrained portfolio. The bottom panel shows the decomposition of the
weights into components corresponding to the unconstrained MVO portfolio (blue), the full
investment constraint (ω′1 = 1, orange), and the ESG constraint (ω′xESG ≥ 1.0, green).
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would suggest, the expected utility contribution of the two constraints (orange), treated as

static, is indeed negative.23

(a) Expected Utility (b) Expected Return

Figure 8: Expected return and utility and their decomposition, for the long/short portfolio
(39) with a constraint on the average portfolio characteristic value (ω′xESG ≥ 1.0). In
(a), the top panel shows the expected utility of the constrained portfolio, and the bottom
panel shows its decomposition into components corresponding to the unconstrained MVO
portfolio (blue), all constraints treated as static (orange), and the information from the
ESG constraint (green). In (b), the top panel shows the expected return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment constraint (orange), the ESG constraint treated as static (ω′xESG ≥ 1.0,
green), and the information from the ESG constraint (red).

However, the expected utility contribution from the information contained in the con-

straints (green) varies over time. During the first four years in our period, the expected

utility contribution from information is negative. After 2008, it alternates in sign, with 2009

23We use decomposition conditioned on X because we decompose expected utility year over year. This is
different from the decomposition of the overall unconditional expected utility in our simulated examples in
Section 4. In addition, the attribution of expected utility to static constraints is only possible when they are
combined together because of the risk term in expected utility. See the earlier remarks after Proposition 1.
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being a strong negative year and 2011, 2014, and 2017 being strong positive years in infor-

mation. This pattern is consistent with the intuition derived from Propositions 4–5, and

the correlations between asset returns and ESG scores in Figure 6. This example vividly

demonstrates that while constraints must decrease the overall expected utility of a portfolio

when treated as static, they can sometimes increase the expected utility depending on the

information contained in the constraints.

Figure 8b shows the expected return of the optimal portfolio and its decomposition based

on (26) in Proposition 5. While the two constraints (orange and green) can contribute either

positively or negatively to the expected returns,24 the main source of contribution in terms

of expected return is from the information in the constraints (red). Like the case of expected

utility decomposition in Figure 8a, the expected return contribution from information is

strongly negative in 2004, 2005, 2007, and 2009, and is strongly positive in 2011, 2014, and

2017.

Realized Return Decomposition. Figure 9 shows the realized returns of the optimal

portfolio and ex post attribution of returns. We compare a portfolio constructed without a

return forecast (p = 0) in Figure 9a with one based on a return forecast (p = 0.1) in Figure

9b.

The upper panel of Figure 9a shows that, without any return forecast, the realized residual

returns in excess of the Fama-French five-factor model of the constrained portfolio fluctuate

around zero over the 16 years in our sample. The bottom panel shows the realized residual

returns of the unconstrained MVO portfolio.

To understand the difference between these returns, the lower panel decomposes the

realized return of the constrained portfolio based on Proposition 6. The full investment

constraint generally contributes to the returns positively, especially before 2010 and after

2017. This is consistent with the fact that the average residual returns during these years

are positive, as shown in Table 1. The contribution of the ESG constraint, treated as static,

also varies over time. On the other hand, the information component contributes negatively

to realized returns before 2010, and positively in 2011, 2014, 2017, and 2018, consistent

with results in Propositions 6 and the pattern of correlations between asset returns and

ESG scores in Figure 6. Overall, these components explain the difference in residual returns

between the unconstrained MVO and the constrained portfolio.

In addition, Figure 9b shows results parallel to those in Figure 9a, but with a return fore-

cast (p = 0.1) in portfolio construction. As expected, the realized residual returns for both

24The sign is determined by the correlation between the holdings of the MVO portfolio and the coefficients
of the constraint. See the remarks after Proposition 1.
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the unconstrained and the constrained portfolio dramatically increase. The decomposition

is also similar to the case without a return forecast, except that the contributions from the

information in the constraints, in relative terms, are much smaller.

(a) No Return Predictability (b) Return Predictability p = 0.1

Figure 9: Realized return and their ex post decomposition, for the long/short portfolio
defined in (39) with a constraint on the average portfolio characteristic value (ω′xESG ≥ 1.0).
(a) corresponds to a return estimator in (40) with no ability to forecast future expected
returns (p = 0), and (b) corresponds to a return estimator with some level of predictability
(p = 0.1). In each subfigure, the top panel shows the realized return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment constraint (orange), the ESG constraint treated as static (ω′xESG ≥ 1.0,
green), and the information from the ESG constraint (red).

Other Portfolios. The long/short portfolio given by (39) is one way to construct ESG

portfolios. In practice, investors may face long-only constraints or use exclusionary con-

straints to construct ESG portfolios. We demonstrate how to decompose the performance

of these portfolios using our framework in Appendices B.2 and B.3, respectively.
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5.3 Excluding Sin Stocks and Energy Stocks

Our universe of stocks contains those with valid CRSP returns and industry labels as de-

scribed in Section 5.1. We also require a firm to have a market capitalization of at least 100

million USD in a particular year to be included in the universe for next year. Table 3 shows,

for each year, the number of firms available in our dataset, the number of excluded firms

based on sin stock and energy stock classification at the end of the last year, and the sum-

mary statistics of the annualized residual returns. In general, we have around 4,000 stocks

each year, of which 4.8% to 7.5% firms are excluded each year because they are labeled as

either sin stocks or energy stocks as of the previous year.

Table 3: Summary statistics of the annualized residual returns (in percentage) from the
Fama-French five-factor model and the number of excluded firms based on sin stock and
energy stock classification at the end of last year (as a percentage of the total number of
firms in the sample).

Year #Firms Excluded Annualized Residual Return (%)
Firms (%) mean std min 25% 50% 75% max

2001 3265 4.9 6.8 45.5 -89.2 -18.4 1.8 22.6 796.7
2002 3505 4.8 2.5 36.0 -94.3 -18.1 3.1 19.3 356.4
2003 3440 5.2 3.3 29.1 -77.3 -14.2 0.5 14.9 276.3
2004 4224 5.4 0.9 28.3 -88.7 -15.1 0.0 12.9 320.3
2005 4484 5.8 0.7 30.1 -87.3 -16.1 -1.9 14.2 256.0
2006 4567 6.1 3.8 28.5 -81.1 -12.1 1.8 15.8 236.9
2007 4659 6.8 4.2 40.1 -88.9 -17.9 -0.6 19.9 487.2
2008 4669 7.0 -8.0 40.9 -93.4 -34.2 -11.4 11.3 515.8
2009 3775 7.0 7.1 38.0 -93.0 -16.5 3.3 26.9 233.4
2010 4195 7.2 1.1 27.7 -87.5 -14.0 0.1 13.4 296.2
2011 4439 7.3 -3.2 28.3 -93.2 -18.7 -1.1 13.3 177.5
2012 4300 7.3 -0.5 25.6 -95.3 -13.1 -0.4 10.5 303.8
2013 4437 7.5 -4.4 28.1 -96.0 -19.2 -6.4 6.9 320.5
2014 4744 6.8 -2.1 26.0 -90.5 -15.3 -1.2 12.0 270.6
2015 4890 5.9 -2.7 28.4 -92.9 -17.6 -0.5 11.7 189.9
2016 4771 5.4 -2.6 27.1 -96.8 -15.5 -2.5 9.1 258.8
2017 4669 5.7 1.1 24.7 -96.7 -10.2 1.2 11.1 223.8
2018 4625 5.8 -1.5 26.9 -96.8 -13.5 -2.1 9.8 198.5
2019 4317 5.3 2.8 25.5 -92.0 -8.4 3.5 14.6 252.4
2020 4215 5.0 -5.4 30.8 -92.1 -20.9 -5.6 8.0 349.3
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We define a binary variable to represent whether an asset can be included in the portfolio:

xi =

0, if stock i belongs to sin stocks or energy stocks

1, otherwise.
(41)

Table 4 shows the cross-sectional correlations between the residual returns and the in-

clusion variable defined in (41) lagged by zero to four years, averaged over all years in our

sample. When the inclusion variable is compared with the residual returns in the same year

(lag 0), there is a 3.59% correlation. When the inclusion variable lags by one to four years,

the correlation increases slightly to around 5%. We use the inclusion variable lagged by one

year as our main measure to construct annually rebalanced portfolios.

Table 4: Average cross-sectional correlation between residual returns and lagged values of
the inclusion variable defined in (41).

Lag (Inclusion Variable (41)) 4 3 2 1 0

Correlation 5.20% 5.17% 5.09% 4.81% 3.59%

Figure 10 shows the year-over-year cross-sectional correlations between the residual re-

turns and the inclusion variable (41), which is generally negative before 2010 and positive

after 2011. This implies that sin stocks and energy stocks have higher excess returns rela-

tive to the Fama-French five-factor model compared to other stocks before 2010, which is

consistent with Hong and Kacperczyk’s (2009) results. After 2011, as the attention to SRI

investing increases, sin stocks and energy stocks tend to deliver lower excess returns.

Figure 10: Cross-sectional correlations between asset returns and the inclusion variable
defined in (41) each year.
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Portfolio Construction. Exclusionary investing usually does not consider short positions,

because otherwise excluded assets can arguably be shorted. Therefore, we consider long-only

portfolios by solving the following problem each year.

max
ω

ω′µ− η

2
ω′Σω

s.t. ω′1 = 1

ωi = 0 if xi = 0

ω ≥ 0.

(42)

We again use the return forecast in (40) to estimate µ and Σ. We choose η such that the

unconstrained MVO portfolio has a realistic leverage.

Expected Return and Utility Decomposition. Figure 11 demonstrates the decompo-

sition of the expected utility and expected return of the portfolio into different components.

The upper panel of Figure 11a shows that the expected utility of the optimal portfolio

is positive through our 20-year sample. This utility is decomposed into three components in

the lower panel using (27) in Proposition 5. The expected utility of the unconstrained MVO

portfolio (blue) is positive, while the expected utility contribution of the three constraints

(orange), treated as static, is negative. The expected utility contribution from information

contained in the constraints (green), however, varies over time. It is generally negative before

2010 and positive after 2011, consistent with the pattern of correlations between asset returns

and the inclusion variable in Figure 10.

Figure 11b shows the expected utility of the optimal portfolio and its decomposition based

on (26) in Proposition 5. The two constraints (orange and green) contribute negatively to

expected returns. The expected return contribution from information (read) is generally

negative before 2010 and generally positive after 2011. Together, the expected return of the

constrained portfolio is lower than that of the unconstrained MVO portfolio primarily driven

by the full investment and long-only constraints.

Realized Return Decomposition. Finally, we show the realized returns of the optimal

portfolio and ex post attribution of returns in Figure 12, in which we compare a portfolio

constructed without a return forecast (p = 0) in Figure 12a with one based on a return

forecast (p = 0.1) in Figure 12b.

The upper panel of Figure 12a shows the realized residual returns in excess of the Fama-

French five-factor model for the constrained portfolio, which is decomposed into several

components based on Proposition 6 in the lower panel. The contribution from the full
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(a) Expected Utility (b) Expected Return

Figure 11: Expected return and utility and their decomposition, for the long-only portfolio
defined in (42) with an exclusionary constraint based on the inclusion variable defined in
(41). In (a), the top panel shows the expected utility of the constrained portfolio, and the
bottom panel shows its decomposition into components corresponding to the unconstrained
MVO portfolio (blue), all constraints treated as static (orange), and the information from the
exclusionary constraint (green). In (b), the top panel shows the expected return in excess of
the Fama-French five-factor model of the constrained portfolio, and the bottom panel shows
its decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the exclusionary
constraint treated as static (green), and the information from the exclusionary constraint
(red).
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(a) No Return Predictability (b) Return Predictability p = 0.1

Figure 12: Realized return and their ex post decomposition, for the long-only portfolio
defined in (42) with an exclusionary constraint based on the inclusion variable defined in
(41). (a) corresponds to a return estimator in (40) with no ability to forecast future expected
returns (p = 0), and (b) corresponds to a return estimator with some level of predictability
(p = 0.1). In each subfigure, the top panel shows the realized return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into a component corresponding to the unconstrained MVO portfolio (blue),
a component attributable to the full investment and long-only constraints combined together
(orange), a component attributable to the exclusionary constraint treated as static (green),
and a component attributable to information from the exclusionary constraint (red).
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investment and the long-only constraints (orange), is generally positive before 2010 except

for 2008, and generally negative after 2011. This pattern is consistent with the average

residual returns shown in Table 3. The exclusionary investing constraint (green), treated as

static, also contributes either positively or negatively over the 20-year period.

In addition, Figure 12b shows results parallel to those in Figure 12a, but with a return

forecast (p = 0.1) in portfolio construction. As expected, the realized residual returns

for both the unconstrained and the constrained portfolio dramatically increase. However,

the constraints greatly limit the ability of the portfolio to take advantage of the return

predictability.

In both cases, the contribution attributable to information from the exclusionary invest-

ing constraint (red) is generally negative before 2010 and positive after 2011, matching the

patterns of the correlation between the returns and the inclusion variable (41) in Figure 10.

Overall, these results demonstrate that our performance attribution framework works

not only for constraints that restrict the level of ESG scores, but also for constraints that

directly exclude assets from a portfolio.

6 Conclusion

Constraints are an integral part of the portfolio construction process, and they have be-

come particularly relevant as investors and regulators debate whether investing with ESG

constraints or excluding stranded assets is to the benefit or detriment of investors. We pro-

pose a framework for constraint attribution that decomposes portfolio holdings, utilities, and

both expected and realized returns into components attributable to each constraint treated

as static and the information from each constraint. While it is commonly believed that

constraints can only decrease the expected utility of a portfolio, we show that this is only

true when they are treated as static. We quantify the information content from constraints

when they are stochastic and potentially correlated with asset returns.

We demonstrate that our methodology can be applied to common examples of con-

straints including the level of a particular characteristic, such as ESG scores, and exclusion

constraints, such as divesting from sin stocks and energy stocks. Our results show that these

constraints do not necessarily decrease the expected utility and returns of the portfolio, and

can even contribute positively to portfolio performance when information contained in the

constraints correlates positively to asset returns.
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A Appendix

In this Appendix, we provide proofs for all the propositions.

A.1 Proof of Proposition 1

Problem (1) can be solved by considering the Lagrangian:

L(ω,λ) = ω′µ− 1

2
ω′Σω − λ′(Aω − b) = ω′µ− 1

2
ω′Σω −

J∑
j=1

λj(A
′
jω − bj) (A.1)

where Aj represents the j-th row (constraint) of the matrix A. The first-order conditions:

∂L(ω,λ)

∂ω
= 0,

∂L(ω,λ)

∂λ
= 0,

(A.2)

lead to:

µ−Σω −A′λ = 0 =⇒ Σω = µ−A′λ =⇒ ω = Σ−1 (µ−A′λ) ,

Aω − b = 0.
(A.3)

The first equation proves (5). Combining the two equations leads to the system of equations

that the optimal Lagrange multipliers, λ∗, should satisfy:

AΣ−1 (µ−A′λ)− b = 0 =⇒ AΣ−1A′λ = AΣ−1µ− b = 0. (A.4)

In particular, when the feasible region of the constrained optimization problem is nonempty,

AΣ−1A′ is invertible, which implies that:

λ∗ =
(
AΣ−1A′)−1 (

AΣ−1µ− b
)
. (A.5)

This completes the proof of (6) and (7).

To derive the expected return decomposition of (10), multiplying the expected return µ

by the portfolio holdings of (7) leads directly to:

µ′ω∗ = µ′Σ−1µ− λ∗′AΣ−1µ. (A.6)
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To derive the expected utility decomposition of (11), we have

µ′ω∗ − 1

2
ω∗′Σω∗ = µ′Σ−1µ− µ′Σ−1A′λ∗ − 1

2

(
µ′ − λ∗′A

)
Σ−1 (µ−A′λ∗)

=
1

2
µ′Σ−1µ− µ′Σ−1A′λ∗ +

1

2

(
2µ′Σ−1A′λ∗ − λ∗′AΣ−1A′λ∗

)
=

1

2
µ′Σ−1µ− 1

2
λ∗′AΣ−1A′λ∗.

(A.7)

The second term can be equivalently written as −1
2

(
Σ−1A′λ∗)′ Σ (Σ−1A′λ∗), in which

Σ−1A′λ∗ is the portfolio holdings attributable to constraints.

A.2 Proof of Proposition 2

We first observe that, conditioned on X, the investor’s optimization problem in (1) remains

the same and, therefore, the portfolio holdings and Lagrange multipliers are given by (5)–(6)

with static constraints A replaced by constraints that depend on characteristics A(X):

ω∗ = Σ−1 (µ−A(X)′λ∗) (A.8)

λ∗ =
(
A(X)Σ−1A(X)′

)−1 (
A(X)Σ−1µ− b

)
. (A.9)

Therefore, the conditional expected return is given by:

E
[
ω∗′r|X

]
= µ′

Xω
∗ = µ′

XωMVO + µ′
XωCSTR

= µ′
XωMVO + µ′ωCSTR + (µ′

X − µ′)ωCSTR,
(A.10)

which proves (14). To get explicit expressions for each term, we have:

µ′
XωMVO = µ′

XΣ
−1µ (A.11)

µ′ωCSTR = −µ′Σ−1A(X)′λ∗ (A.12)

(µ′
X − µ′)ωCSTR = −(µ′

X − µ′)Σ−1A(X)′λ∗. (A.13)

The conditional expected utility consists of two parts. The decomposition of the expected
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return is given by (A.10). Therefore, the conditional expected utility can be decomposed by:

µ′
Xω

∗ − 1

2
ω∗′ΣXω

∗ = µ′
XωMVO + µ′ωCSTR + (µ′

X − µ′)ωCSTR

− 1

2
(ωMVO + ωCSTR)

′ ΣX (ωMVO + ωCSTR)

= µ′
XωMVO + µ′ωCSTR + (µ′

X − µ′)ωCSTR

− 1

2
ω′

MVOΣXωMVO − 1

2
ω′

CSTRΣXωCSTR − ω′
MVOΣXωCSTR

= µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

+ µ′ωCSTR − 1

2
ω′

CSTRΣXωCSTR

+ (µ′
X − µ′)ωCSTR − ω′

MVOΣXωCSTR

= µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

+ µ′ωCSTR − 1

2
ω′

CSTRΣωCSTR − 1

2
ω′

CSTR (ΣX −Σ)ωCSTR

+ (µ′
X − µ′)ωCSTR − ω′

MVOΣωCSTR − ω′
MVO (ΣX −Σ)ωCSTR

(1)
= µ′

XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+ (µ′
X − µ′)ωCSTR − 1

2
ω′

CSTR (ΣX −Σ)ωCSTR − ω′
MVO (ΣX −Σ)ωCSTR

= µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+ (µ′
X − µ′)ωCSTR −

(
1

2
ω′

CSTR + ω′
MVO

)
(ΣX −Σ)ωCSTR.

(A.14)

Here step (1) follows from the fact that

ω′
MVOΣωCSTR = µ′Σ−1ΣωCSTR = µ′ωCSTR.

This proves (17). To get explicit expressions for each term, we have:

µ′
XωMVO − 1

2
ω′

MVOΣXωMVO = µ′
XΣ

−1µ− 1

2

(
Σ−1µ

)′
ΣX

(
Σ−1µ

)
(A.15)
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− 1

2
ω′

CSTRΣωCSTR = −1

2

(
λ∗′A(X)Σ−1

)
Σ
(
Σ−1A(X)′λ∗) = −1

2
λ∗′A(X)Σ−1A(X)′λ∗

(A.16)

(µ′
X − µ′)ωCSTR −

(
1

2
ω′

CSTR + ω′
MVO

)
(ΣX −Σ)ωCSTR

= −(µ′
X − µ′)Σ−1A(X)′λ∗ −

(
Σ−1µ+

1

2
Σ−1A(X)′λ∗

)′

(ΣX −Σ)Σ−1A(X)′λ∗.

(A.17)

A.3 Proof of Proposition 3

Because the linear decomposition in Proposition 2 is conditioned on characteristics X, the

unconditional decomposition of the expected return follows from the linearity of expected

value with respect to the distribution of X.

For the unconditional decomposition of the expected utility, we observe that

Var
(
ω∗′r

)
= E

[
Var

(
ω∗′r|X

)]
+Var

(
E
[
ω∗′r|X

])
. (A.18)

Therefore,

E
[
ω∗′r

]
− 1

2
Var

(
ω∗′r

)
= E

[
E
[
ω∗′r|X

]]
− 1

2
E
[
Var

(
ω∗′r|X

)]
− 1

2
Var

(
E
[
ω∗′r|X

])
= E

[
E
[
ω∗′r|X

]
− 1

2
Var

(
ω∗′r|X

)]
− 1

2
Var

(
E
[
ω∗′r|X

])
= E

[
µ′

Xω
∗ − 1

2
ω∗′ΣXω

∗
]
− 1

2
Var (µ′

Xω
∗) .

(A.19)

The first term follows from (17) in Proposition 2. The variance in the second term can be

further decomposed into:

Var (µ′
Xω

∗) = Var (µ′
XωMVO + µ′

XωCSTR)

= ω′
MVOVar (µ

′
X)ωMVO +Var (µ′

XωCSTR) + 2Cov (µ′
XωMVO,µ

′
XωCSTR) .

(A.20)
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Substituting both terms back to (A.19) leads to:

E
[
ω∗′r

]
− 1

2
Var

(
ω∗′r

)
= E[µ′

X]ωMVO − 1

2
ω′

MVOE[ΣX]ωMVO − 1

2
ω′

MVOVar (µ
′
X)ωMVO

− 1

2
E[ω′

CSTRΣωCSTR]

+ E [(µ′
X − µ′)ωCSTR − ω′

SHR(ΣX −Σ)ωCSTR]

− 1

2
Var (µ′

XωCSTR)−
1

2
Cov (µ′

XωMVO,µ
′
XωCSTR)

= µ′ωMVO − 1

2
ω′

MVOΣωMVO

− 1

2
E [ω′

CSTRΣωCSTR]

+ E [(µ′
X − µ′)ωCSTR − ω′

SHR(ΣX −Σ)ωCSTR]

− 1

2
(Var (ω′

CSTRµX) + 2Cov (ω′
MVOµX,ω

′
CSTRµX)) ,

(A.21)

which completes the proof.

A.4 Proof of Proposition 4

Under Assumption 2, item 1, the conditional distribution r|X is normal. To compute its

conditional expected value, we first find a constant matrix C such that Z ≡ r − CX is

uncorrelated with X. For this to be true, we require

0 = Cov (Z,X) = Cov (r−CX,X) = Cov(r,X)−C · Cov(X,X), (A.22)

which yields:

C = Cov(r,X)Cov(X,X)−1. (A.23)
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Therefore,

µX = E[r|X] = E[Z+CX|X] = E[Z|X] +CX

(1)
= E[Z] +CX = E[r] +C(X− E[X])

= µ+ Cov(r,X)Cov(X,X)−1(X− ν),

(2)
= µ+

(
Cov(r,x1) · · · Cov(r,xJ)

)
1

σ2
x1

I 0 0

0
. . . 0

0 0 1
σ2
xJ

I



x1 − ν1

...

xJ − νJ

 ,

= µ+
J∑

j=1

Cov(r,xj)(xj − νj)

σ2
xj

.

(A.24)

Here step (1) follows from the fact that Z and X are uncorrelated multivariate Gaussian

random vectors and therefore are independent. Step (2) follows from Assumption 2, items 3

and 4 that each characteristic is homoskedastic, and the characteristic values are independent

both across different assets and between the J different constraints.

This proves (B.2) in Proposition B.1 of the Appendix. Note that we have only used items

1, 3, and 4 of Assumption 2, but not items 2 and 5.

To further prove (24) of Proposition 4, we observe that items 2 and 5 of Assumption 2

yield that:

Cov(r,xj) = ρjσrσxj
I. (A.25)

Combining (A.24) with (A.25) completes the proof of (24):

µX = µ+
J∑

j=1

ρjσr(xj − νj)

σxj

. (A.26)
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Next, we compute the conditional covariance matrix of r|X:

ΣX = Cov(r|X) = Cov(Z+CX|X) = Cov(Z|X)

(1)
= Cov(Z) = Cov(r−CX) = Cov(r)−CCov(X,X)C′

= Σ− Cov(r,X)Cov(X,X)−1Cov(r,X)′

(2)
= Σ−

(
Cov(r,x1) · · · Cov(r,xJ)

)
1

σ2
x1

I 0 0

0
. . . 0

0 0 1
σ2
xJ

I



Cov(r,x1)

′

...

Cov(r,xJ)
′

 ,

= Σ−
J∑

j=1

Cov(r,xj)Cov(r,xj)
′

σ2
xj

.

(A.27)

Again, step (1) follows from the fact that Z and X are uncorrelated multivariate Gaussian

random vectors and therefore are independent. Step (2) follows from Assumption 2, items 3

and 4 that each characteristic is homoskedastic, and the characteristic values are independent

both across different assets and between the J different constraints.

This proves (B.3) in Proposition B.1 of the Appendix. Note that we have only used items

1, 3, and 4 of Assumption 2, but not items 2 and 5.

To further prove (25) of Proposition 4, we again combine items 2 and 5 of Assumption 2

with (A.27),

ΣX = Σ−
J∑

j=1

ρ2jσ
2
rσ

2
xj
I

σ2
xj

= Σ−
J∑

j=1

ρ2jσ
2
rI, (A.28)

which completes the proof of (25).

A.5 Proof of Proposition 5

Substituting the excess return from information in Proposition 4 into the expected return

decomposition of Proposition 2, we have:

E
[
ω∗′r|X

]
= µ′

Xω
∗ = µ′

XωMVO + µ′ωCSTR + (µ′
X − µ′)ωCSTR

= µ′
XωMVO + µ′ωCSTR +

J∑
j=1

ρjσr
(xj − νj)ωCSTR

σxj

,
(A.29)

which completes the proof of (26).

Substituting the excess return and excess covariance from information in Proposition 4
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into the expected utility decomposition of Proposition 2, we have:

µ′
Xω

∗ − 1

2
ω∗′ΣXω

∗ = µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+ (µ′
X − µ′)ωCSTR − ω′

SHR(ΣX −Σ)ωCSTR

= µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+

(
J∑

j=1

ρjσr
(xj − νj)ωCSTR

σxj

− ω′
SHR

(
−

J∑
j=1

ρ2jσ
2
rI

)
ωCSTR

)

= µ′
XωMVO − 1

2
ω′

MVOΣXωMVO

− 1

2
ω′

CSTRΣωCSTR

+
J∑

j=1

(
ρjσr

(xj − νj)ωCSTR

σxj

+ ρ2jσ
2
rω

′
SHRωCSTR

)
,

(A.30)

which completes the proof of (27).

Similarly, substituting the excess return and excess covariance from the information in

Proposition B.1 into the decomposition of Proposition 2 yields more general results in Propo-

sition B.2 under items 1, 3, and 4 of Assumption 2, but not requiring items 2 and 5.

A.6 Proof of Proposition 6

Given the decomposition of portfolio holdings in (7), we have:

r̃′ω∗ = r̃′Σ−1µ− r̃′Σ−1A′λ∗

= r̃′Σ−1µ− r̃′StaticΣ
−1A′λ∗ − r̃′InfoΣ

−1A′λ∗

(1)
= r̃′Σ−1µ− r̃′StaticΣ

−1A′λ∗ −

(
J∑

j=1

ρ(r̃, x̃j)σ̃r(x̃
′
j − ν̃ ′

j)

σ̃xj

)
Σ−1A′λ∗

= r̃′ωMVO + r̃′StaticωCSTR +
J∑

j=1

ρ(r̃, x̃j)σ̃r

(x̃′
j − ν̃ ′

j)ωCSTR

σ̃xj

,

(A.31)

where step (1) follows from the definition of r̃Info in (29).
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A.7 Proof of Proposition 7

When there is a single constraint A(x) = x′, the Lagrange multiplier λ∗ is a scalar. From

(16), we can further simplify λ∗ to:

λ∗ =
x′Σ−1µ− b

x′Σ−1x
. (A.32)

Substituting this Lagrange multiplier into the decomposition of portfolio holdings in (7)

yields:

ω∗ = Σ−1µ− λ∗Σ−1x = Σ−1µ− xΣ−1µ− b

x′Σ−1x
Σ−1x. (A.33)

Substituting (A.33) into the last term (the information component) of the expected return

decomposition in (26) and assuming the expected value ν = E[x] = 0 yields:

ρσr

σx

x′ωCSTR =
ρσr

σx

x′ (−λ∗Σ−1x
)

=
ρσr

σx

x′
(
−xΣ−1µ− b

x′Σ−1x
Σ−1x

)
=

ρσr

σx

(
−xΣ−1µ− b

x′Σ−1x
x′Σ−1x

)
=

ρσr

σx

(
b− x′Σ−1µ

)
.

(A.34)

Therefore, the full decomposition of expected return in (26) reduces to:

E
[
ω∗′r|x

]
= µ′

XωMVO + µ′ωCSTR +
ρσr

σx

x′ωCSTR

= µ′
XΣ

−1µ− λ∗µ′Σ−1x+
ρσr

σx

(
b− x′Σ−1µ

)
= µ′

XΣ
−1µ+

x′Σ−1µ

x′Σ−1x

(
b− x′Σ−1µ

)
+

ρσr

σx

(
b− x′Σ−1µ

)
.

(A.35)

Note that both (A.34) and (A.35) assumes that the Lagrange multiplier λ∗ ̸= 0. When the

constraint is not binding for inequality constraints, (A.34) becomes zero and the last two

terms of (A.35) vanishes.

A.8 Proof of Proposition 8

When x is a vector of binary random variables following the Bernoulli distribution, we need

to quantify the excess expected return µx − µ in (14) of Proposition 2. The i-the element
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of µx − µ is given by:

µi,x − µi = E[ri|x]− E[ri]
(1)
= E[ri|xi]− E[ri]
(2)
= xi (E[ri|xi = 1]− E[ri]) + (1− xi) (E[ri|xi = 0]− E[ri]) ,

(A.36)

for i = 1, 2, . . . , N . Here step (1) follows from item 5 of Assumption 2 which guarantees that

there is no cross-correlation between the return and characteristic value of different assets.

Step (2) uses the fact that xi is either 1 or 0.

To compute E[ri|xi = 1], we consider the correlation between the characteristic value and

return of the i-th asset:

ρ ≡ Corr(xi, ri) =
Cov(xi, ri)√
Var(xi)Var(ri)

=
E[xiri]− E[xi]E[ri]√

Var(xi)Var(ri)

(1)
=

E[ri|xi = 1]P(xi = 1)− P(xi = 1)E[ri]√
P(xi = 1)(1− P(xi = 1))Var(ri)

(2)
=

(E[ri|xi = 1]− E[ri])πxi=1√
πxi=1(1− πxi=1)σ2

r

=
E[ri|xi = 1]− E[ri]

σr

√
πxi=1

πxi=0

.

(A.37)

Here step (1) follows from the fact that xi follows the Bernoulli distribution, whose variance

is given by P(xi = 1)(1 − P(xi = 1)). Step (2) assumes homoskedastic returns in item #2

of Assumption 2. We use πxi=1 = P(xi = 1) and πxi=0 = P(xi = 0) to denote the marginal

probability of the i-th asset being included or excluded from the portfolio.

Equation (A.37) implies that

E[ri|xi = 1]− E[ri] = ρσr

√
πxi=0

πxi=1

. (A.38)

To compute E[ri|xi = 0], we observe that:

E[ri] = E[ri|xi = 1]πxi=1 + E[ri|xi = 0]πxi=0, (A.39)
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which yields:

E[ri|xi = 0]− E[ri] = − (E[ri|xi = 1]− E[ri])
πxi=1

πxi=0

= −ρσr

√
πxi=1

πxi=0

, (A.40)

Substituting (A.38) and (A.40) into (A.36) yields:

µi,x − µi = ρσr

(
xi

√
πxi=0

πxi=1

− (1− xi)

√
πxi=1

πxi=0

)
(A.41)

for i = 1, 2, . . . , N . Therefore,

µx − µ = ρσr (x⊙ u− (1− x)⊙ v) , (A.42)

where

u =

(√
πx1=0

πx1=1

, . . . ,

√
πxN=0

πxN=1

)′

, v =

(√
πx1=1

πx1=0

, . . . ,

√
πxN=1

πxN=0

)′

.

Substituting this into (14) of Proposition 2 yields:

E
[
ω∗′r|x

]
= µ′

xωMVO + µ′ωCSTR + (µ′
x − µ′)ωCSTR

= µ′
xωMVO + µ′ωCSTR + ρσr (x⊙ u− (1− x)⊙ v)′ ωCSTR,

(A.43)

which completes the proof of (35).
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B Internet Appendix

In this Internet Appendix, we provide additional technical results.

B.1 General Dependence between Returns and Characteristics

In this section, we revisit Assumption 2 and results in Section 3.3. In particular, we derive

a version of Propositions 4–5 under items 1, 3, and 4 of Assumption 2, but not requiring

items 2 and 5.

When returns and asset characteristics have a general dependence, the covariance matrix

of (r′,x′
1, . . . ,x

′
J) can be written as:

Σ Cov (r, (x′
1, . . . ,x

′
J))

Cov ((x′
1, . . . ,x

′
J), r)


σ2
x1
I 0 0

0
. . . 0

0 0 σ2
xJ
I




. (B.1)

Recall that X represents the (N × J)-dimensional vector (x′
1, . . . ,x

′
J)

′, and we use ν ≡
(ν ′

1, . . . ,ν
′
J)

′ to denote the expected value of X. The following result generalizes Proposition

4 under the above weaker assumptions. We provide the proof together with the proof of

Proposition 4 in Section A.4.

Proposition B.1. Under the covariance structure in (B.1), r|X is normally distributed with

an expected value given by:

µX = E[r|X] = µ+
J∑

j=1

Cov(r,xj)

σxj

(xj − νj)

σxj

, (B.2)

and a covariance matrix given by:

ΣX = Cov(r|X) = Σ−
J∑

j=1

Cov(r,xj)Cov(r,xj)
′

σ2
xj

, (B.3)

where Cov(r,xj) is the N × N covariance matrix between two N-dimensional vector r and

xj.

Proposition B.1 also allows for more explicit decompositions of the expected return and

utility of the portfolio by substituting (B.2)–(B.3) into Proposition 2, which gives the fol-
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lowing generalized result of Proposition 5 under the above weaker assumptions. We provide

the proof together with the proof of Proposition 5 in Section A.5.

Proposition B.2. Under the covariance structure in (B.1) and conditioned on information

in X that is used to form constraints, A(X), the following decompositions hold for the optimal

portfolio ω∗.

1. Expected return decomposition.

E
[
ω∗′r|X

]
= µ′

Xω
∗ = µ′

XωMVO + µ′ωCSTR +
J∑

j=1

ω′
CSTR

Cov(r,xj)

σxj

(xj − νj)

σxj

. (B.4)

2. Expected utility decomposition.

µ′
Xω

∗ − 1

2
ω∗′ΣXω

∗ = µ′
XωMVO − 1

2
ω′

MVOΣXωMVO − 1

2
ω′

CSTRΣωCSTR

+
J∑

j=1

(
ω′

CSTR

Cov(r,xj)

σxj

(xj − νj)

σxj

+
1

2
ω′

SHR

Cov(r,xj)Cov(r,xj)
′

σ2
xj

ωCSTR

)
.

(B.5)

Furthermore, the unconditional expected return and utility can be decomposed into compo-

nents that are attributable to the unconstrained MVO portfolio, static constraints, and infor-

mation, respectively, by following Proposition 3.

B.2 Long-Only ESG Portfolios

Portfolio Construction. In this section, we consider investors who construct long-only

portfolios each year by solving the following problem.

max
ω

ω′µ− η

2
ω′Σω

s.t. ω′1 = 1

ω′xESG ≥ b

ω ≥ 0.

(B.6)

In contrast to (39), we have an additional constraint that all portfolio weights must be non-

negative. We again set b = 1 as an example in our analysis, and use the return forecast in

(40) to estimate µ and Σ. We choose η such that the unconstrained MVO portfolio has a

realistic leverage.
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Portfolio Holdings Decomposition. Figure B.1 shows the bottom and top 100 assets

with the lowest and highest portfolio weights for the optimal portfolio, averaged over all

years, respectively. We decompose the portfolio weights into components corresponding to

the unconstrained MVO portfolio and constraints, respectively, based on (7) in Proposition 1.

For performance attributions of long-only portfolios, we always combined the full investment

constraint and the long-only constraint for simplicity.

In Figure B.1a, the bottom assets, by design, have zero weights. This is a result of the

negative contribution from the ESG constraint (green) combined with the positive contribu-

tion from the full investment and long-only constraints (orange). In other words, these assets

tend to have low ESG scores, but the long-only constraint forces them to have zero weights

instead of negative weights. On the other hand, for the top 100 assets in Figure B.1b, the

most significant contribution comes from the ESG constraint (green). The full investment

and long-only constraints (orange) generally add negative contributions.

Expected Return and Utility Decomposition. Figure B.2 demonstrates the decom-

position of the expected utility and expected return of the long-only portfolio into different

components.

The upper panel of Figure B.2a shows that the expected utility of the optimal portfolio

is negative in most years in our sample. This utility is decomposed into three components in

the lower panel using (27) in Proposition 5. The expected utility of the unconstrained MVO

portfolio (blue) is positive over all years. Compared with the long/short portfolio in Figure

8, the expected utility contribution of the three constraints (orange), treated as static, is

now much more negative due to the addition of the long-only constraint. Like the long/short

portfolio, the expected utility contribution from the information contained in the constraints

(green) varies over time. The pattern is again consistent with the pattern of correlations

between asset returns and ESG scores in Figure 6.

Figure B.2b shows the expected utility of the optimal portfolio and its decomposition

based on (26) in Proposition 5. The full investment and long-only constraints (orange)

contribute negatively to expected returns. The ESG constraint (green) can contribute either

positively or negatively to the expected returns, but generally on a very small scale relative to

other components. The expected return contribution from the information is very significant,

which is strongly negative in 2004, 2005, 2007, and 2009, and is strongly positive in 2011,

2014, and 2017. However, the negative contributions from the full investment and long-only

constraints are so strong that the expected return of the constrained portfolio is lower than

that of the unconstrained MVO portfolio in most years, except for 2014.
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(a) Bottom assets with lowest weights.

(b) Top assets with highest weights.

Figure B.1: Average portfolio weights over all years and their decomposition, for the long-
only portfolio defined in (B.6) with a constraint on the average portfolio characteristic value
(ω′xESG ≥ 1.0). (a) shows the bottom assets with the lowest weights and (b) shows the
top assets with the highest weights. In each subfigure, the top panel shows the portfolio
weights (%) of the constrained portfolio. The bottom panel shows the decomposition of the
weights into components corresponding to the unconstrained MVO portfolio (blue), the full
investment and long-only constraints combined together (ω′1 = 1 and ω ≥ 0, orange), and
the ESG constraint (ω′xESG ≥ 1.0, green).
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(a) Expected Utility (b) Expected Return

Figure B.2: Expected return and utility and their decomposition, for the long-only portfolio
defined in (B.6) with a constraint on the average portfolio characteristic value (ω′xESG ≥ 1.0).
In (a), the top panel shows the expected utility of the constrained portfolio, and the bottom
panel shows its decomposition into components corresponding to the unconstrained MVO
portfolio (blue), all constraints treated as static (orange), and the information from the
ESG constraint (green). In (b), the top panel shows the expected return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the ESG constraint
treated as static (ω′xESG ≥ 1.0, green), and the information from the ESG constraint (red).
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Realized Return Decomposition. Figure B.3 shows the realized returns of the optimal

portfolio and ex post attribution of returns. Here we again compare a portfolio constructed

without a return forecast (p = 0) in Figure B.3a with one based on a return forecast (p = 0.1)

in Figure B.3b.

(a) No Return Predictability (b) Return Predictability p = 0.1

Figure B.3: Realized return and their ex post decomposition, for the long-only portfolio
defined in (B.6) with a constraint on the average portfolio characteristic value (ω′xESG ≥ 1.0).
(a) corresponds to a return estimator in (40) with no ability to forecast future expected
returns (p = 0), and (b) corresponds to a return estimator with some level of predictability
(p = 0.1). In each subfigure, the top panel shows the realized return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the ESG constraint
treated as static (ω′xESG ≥ 1.0, green), and the information from the ESG constraint (red).

The upper panel of Figure B.3a shows that, without any return forecast, the realized

residual returns in excess of the Fama-French five-factor model of the constrained portfolio

fluctuate around zero over the 16 years in our sample.

The lower panel decomposes the realized return of the constrained portfolio based on

Proposition 6. The full investment and long-only constraints (orange) generally contribute

to the returns positively, especially before 2010. This is again because the average residual
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returns during these years are positive, as shown in Table 1, and the long-only constraint

now plays the role of forcing the portfolio to take advantage of these positive returns. The

ESG constraint, though, generally contributes negatively to realized returns in these years.

In addition, Figure B.3b shows results parallel to those in Figure B.3a, but with a return

forecast (p = 0.1) in portfolio construction. As expected, the realized residual returns for

both the unconstrained and the constrained portfolio dramatically increase. However, the

constraints limit the ability of the portfolio to take advantage of the return predictability.

In both cases, the information component contributes negatively to realized returns be-

fore 2010, and positively in 2011, 2014, 2017, and 2018, which is consistent with results

in Propositions 6 and the pattern of correlations between asset returns and ESG scores in

Figure 6. Overall, these components explain the difference in residual returns between the

unconstrained MVO and the constrained portfolio.

B.3 Exclusionary ESG Investing

Portfolio Construction. Another common heuristic to implement ESG investing is to

directly exclude assets with low ESG scores. We consider investors who construct long-only

portfolios each year by solving the following problem.

max
ω

ω′µ− η

2
ω′Σω

s.t. ω′1 = 1

ω[i] = 0 for i ≤ 500 assets ordered by xESG

ω ≥ 0.

(B.7)

In contrast to (B.6), we replace the constraint on the average ESG score of the portfolio with

an alternative constraint that excludes the bottom 500 assets ordered by their ESG scores.

We again use the return forecast in (40) to estimate µ and Σ. We choose η such that the

unconstrained MVO portfolio has a realistic leverage.

Expected Return and Utility Decomposition. Figure B.4 demonstrates the decom-

position of the expected return and utility of the portfolio into different components.

The upper panel of Figure B.4a shows that the expected utility of the optimal portfolio

is positive between 2008 and 2018 and negative in other years. This utility is decomposed

into three components in the lower panel using (27) in Proposition 5. The expected utility

of the unconstrained MVO portfolio (blue) is positive over all years. Like the long/short

portfolio in Figure B.2, the expected utility contribution of the three constraints (orange),
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treated as static, is negative. The expected utility contribution from information contained

in the constraints (green), however, varies over time. The pattern is again consistent with

the pattern of correlations between asset returns and ESG scores in Figure 6.

(a) Expected Utility (b) Expected Return

Figure B.4: Expected return and utility and their decomposition, for the long-only portfolio
defined in (B.7) with a constraint that excludes the bottom 500 assets ordered by their ESG
scores. In (a), the top panel shows the expected utility of the constrained portfolio, and the
bottom panel shows its decomposition into components corresponding to the unconstrained
MVO portfolio (blue), all constraints treated as static (orange), and the information from
the ESG constraint (green). In (b), the top panel shows the expected return in excess of the
Fama-French five-factor model of the constrained portfolio, and the bottom panel shows its
decomposition into components corresponding to the unconstrained MVO portfolio (blue),
the full investment and long-only constraints combined together (orange), the ESG constraint
treated as static (green), and the information from the ESG constraint (red).

Figure B.4b shows the expected utility of the optimal portfolio and its decomposition

based on (26) in Proposition 5. The two constraints (orange and green) contribute nega-

tively to expected returns. The expected return contribution from information is strongly

negative in 2004, 2005, 2007, 2009, and 2019, and is strongly positive in 2011, 2014, and

2017. Together, the expected return of the constrained portfolio is lower than that of the

unconstrained MVO portfolio in most years.
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Realized Return Decomposition. Figure B.5 shows the realized returns of the optimal

portfolio and ex post attribution of returns. Here we again compare a portfolio constructed

without a return forecast (p = 0) in Figure B.5a with one based on a return forecast (p = 0.1)

in Figure B.5b.

(a) No Return Predictability (b) Return Predictability p = 0.1

Figure B.5: Realized return and their ex post decomposition, for the long-only portfolio
defined in (B.7) with a constraint that excludes the bottom 500 assets ordered by their
ESG scores. (a) corresponds to a return estimator in (40) with no ability to forecast future
expected returns (p = 0), and (b) corresponds to a return estimator with some level of
predictability (p = 0.1). In each subfigure, the top panel shows the realized return in
excess of the Fama-French five-factor model of the constrained portfolio, and the bottom
panel shows its decomposition into components corresponding to the unconstrained MVO
portfolio (blue), the full investment and long-only constraints combined together (orange),
the ESG constraint treated as static (green), and the information from the ESG constraint
(red).

The upper panel of Figure B.5a shows the realized residual returns in excess of the Fama-

French five-factor model of the constrained portfolio without any return forecast. This is

different from the realized residual returns of the unconstrained MVO portfolio in the lower

panel (blue). To understand the difference between these returns, the lower panel further

decomposes the realized return of the constrained portfolio based on Proposition 6.
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In addition, Figure B.5b shows results parallel to those in Figure B.5a, but with a return

forecast (p = 0.1) in portfolio construction. As expected, the realized residual returns for

both the unconstrained and the constrained portfolio dramatically increase.

In both cases, the information component contributes negatively to realized returns before

2010, and positively in 2011, 2014, 2017, and 2018, consistent with the results of Proposition

6 and the pattern of correlations between asset returns and ESG scores in Figure 6.
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