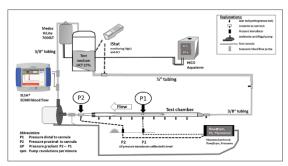
IN-SILICO REPLACEMENT OF SINGLE-LUMEN CANNULA BENCH TESTING ACCORDING TO ISO 18193:2021

Simon J Sonntag (1), Weiyi Kong (1), John W. Benjamin (1), Fabien Péan (1), Yu-Chung Liao (1), Bence Z. Rochlitz (1)


1. Virtonomy GmbH, Germany

Introduction

Cannula systems are essential for extracorporeal membrane oxygenation (ECMO) allowing adequate blood flow. To replace the costly bench testing for single-lumen cannulas (SLCs), we develop a validated in-silico replacement.

Materials and Methods

The ISO 18193:2021 standard describes three main bench tests for SLCs: pressure drop (PD), blood cell damage, and collapse resistance. We present a computational fluid dynamics (CFD) model of the PD test based on our novel Smoothed Particle Hydrodynamics (SPH) framework able to capture turbulent characteristics like Large Eddy Simulations.

Figure 1: PD test setup [1]

The PD test is conducted according to [1] complying with the ISO 18193:2021 standard (Fig. 1). PD simulations of a selected commercial 19Fr/23cm SLC are performed for multiple operating flow rate range data points.

Results

The PD-flow rate simulation data shows close agreement with the literature reference. The relative error of the pressure drop results is in the range of 3%, indicating the accuracy and regulatory utility of the SPH computations.

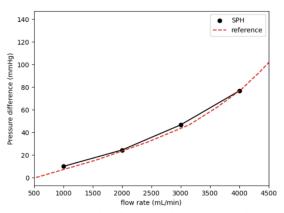


Figure 2: PD under different flow rates for the selected commercial SLC (19Fr/23cm). Red: bench test data from [1] and black: SPH simulation results.

Discussion and Conclusions

We showed that the in-silico model (Fig. 3) provides accurate results to replace the physical bench test, significantly reducing time and cost. Therefore, it allows cannula manufacturers to replace in-vitro tests streamlining development and optimization times. Thanks to thorough validation, the model presents benefits for the regulatory approval process like indicating substantial equivalency to predicate devices.

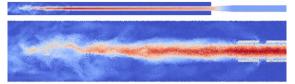


Figure 3: Velocity distribution in the developed arterial SLC flow field (flow rate: 1 L/min). Scale: 0-1.2 m/s from blue to red.

References

1. Broman, L. M., et al. "Pressure and flow properties of cannulae for extracorporeal membrane oxygenation I: return (arterial) cannulae". Perfusion, 2019, Vol. 34(1S) 58–64. DOI: 10.1177/0267659119830521.

