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Introduction 

The use of mathematical models in the cardiovascular 

domain is increasingly recognized for their potential in 

predicting diseases, planning therapies, and controlling 

medical devices. These models are usually composed 

of nonlinear ordinary differential equations (ODEs) 

that necessitate numerical solutions. However, this 

requirement often makes the solving process time-

intensive, constraining their practical applications. For 

instance, employing these models within a model-

predictive control algorithm for cardiac assistive 

devices demands predictions of multiple heartbeats 

within a second, a task challenging when using 

complex ODEs. Previously, we showed the potential of 

simplifying a lumped-parameter cardiovascular model 

using deep learning-based Koopman analysis for single 

heartbeats [1]. Here we present our preliminary 

findings on expanding the methodology to multiple 

heartbeats. 

 

Methods 

The dataset was generated using a previously 

established lumped-parameter cardiovascular system 

model [2]. In total, 100 simulations of 10 s were 

performed for varying initial conditions, extracting 18 

different hemodynamic signals of interest, including 

flows, pressures, and volumes in the heart and the 

circulatory system. All signals were sampled at 50 Hz 

and stored for further use. The data was z-normalized 

and split in ratio 8:1:1 into training, validation, and test 

sets, respectively. Each time series in the training set 

was split into sequences of 1 s with an overlap of 20 

ms using a sliding window approach. 

Following the work of Lusch et al. [3], a deep auto-

encoder (4 layers, 30 hidden units) was used to 

transform the data into an intermediate space to 

linearize the system’s dynamics. The transformed 

states were then fed into a second neural network (3 

fully connected dense layers with 10 hidden units 

each). This network was employed to identify a finite 

set of Eigenvalues estimating the Koopman operator Ƙ. 

The obtained matrix Ƙ is applied to predict future time 

steps of the hemodynamic states in the intermediate 

space. Finally, the results are transformed back into the 

original space using the decoder network.  

To evaluate the network’s prediction accuracy, the root 

mean squared error (RMSE) between prediction and 

ground truth was calculated for all normalized 

sequences in the test dataset. To assess the 

computational performance of the reduced model, the 

time required to predict 10 heartbeats was calculated. 

 

Results 

Predicting 10 heartbeats (500 time steps) given only 

the initial condition resulted in an average z-

normalized RMSE of 0.13 over the whole test set 

(Figure 1). For the predictions on an AMD Ryzen 7 

PRO 4750U, the reduced model takes on average 0.78 

s compared to 12.5 s using the full model. The variance 

of all obtained eigenvalues was below 1 × 10⁻⁶, 

indicating the linearity of the reduced system. 

 

Figure 1: Reduced model prediction versus ground 

truth of left ventricular pressure (Plv) and volume (Vlv) 

for 10 s. 

Discussion 

The approach previously employed for a single 

heartbeat [1] was effectively applied for 10 heartbeats, 

highlighted by low RMSE and variance in Eigenvalues. 

The computational time of 0.78 s required for the 

prediction of 10 heartbeats represents a speed-up of 

factor 16 compared to the lumped-parameter model. 

Furthermore, it lies within a range suitable for use in 

model-predictive assays to control medical devices like 

neuroprostheses or circulatory assist devices. 

Current work is directed towards the prediction of 

longer sequences with a particular emphasis on 

robustness against parameter changes, and optimization 

of network architecture to further enhance accuracy 

and computational performance. 
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