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Abstract

Even though it can provide design teams with valuable
performance insights and enhance decision-making, mon-
itored building data is rarely reused in an effective feed-
back loop from operation to design. Data mining allows
users to obtain such insights from the large datasets gen-
erated throughout the building life cycle. Furthermore,
semantic web technologies allow to formally represent the
built environment and retrieve knowledge in response to
domain-specific requirements. Both approaches have in-
dependently established themselves as powerful aids in
decision-making. Combining them can enrich data min-
ing processes with domain knowledge and facilitate knowl-
edge discovery, representation and reuse. In this article,
we look into the available data mining techniques and in-
vestigate to what extent they can be fused with semantic
web technologies to provide recommendations to the end
user in performance-oriented design. We demonstrate an
initial implementation of a linked data-based system for
generation of recommendations.

Introduction

Building data: BIM and semantic web technologies in
a sensor world

Recent years have presented significant research efforts
accentuating the environmental impact of the built envi-
ronment and methods for its mitigation. That has amended
design practice and has made it strive towards implement-
ing sustainability principles as fundamental and not merely
complementary. Simultaneously, the rapid technological
developments have allowed powerful computational tech-
niques to emerge in support of architectural design and en-
gineering. Such technologies allow to represent buildings
semantically (Pauwels et al. 2017) and discover implicit
knowledge about their performance through pattern recog-
nition and knowledge discovery techniques (Fayyad et al.
1996). With regards to data representation in Architecture,
Engineering and Construction (AEC), Building Informa-
tion Modelling (BIM) allows the creation of semantically
rich building models (Sacks et al. 2018).

Recently, semantic web technologies (Berners-Lee et al.
2001) have received major attention in the attempt to break
open the isolated information silos and connect the seman-
tically rich building data with other meaningful data about
the building, its occupants, environment, etc. These fur-
ther reaching semantic models are the building blocks of
Linked Building Data (LBD) and provide a decentralized
source of information (Pauwels 2014). On the other hand,
Building Monitoring Systems (BMS) play an essential role
in building operation, by allowing the collection of opera-
tional data through a myriad of sensors and devices (Fan
et al. 2015). Advanced analytical methods are hereby of
high value, as they help uncover hidden knowledge in the
data, and highlight its potential to the future of building
design and performance improvement (Fan et al. 2015,
Miller et al. 2018).

Despite the availability of knowledge bases, many of the
decisions taken during the design process are based on
‘rules of thumb’ and previous experience (Heylighen et al.
2007), and not on data and evidence contained in building
performance, BIM models or LBD knowledge graphs. If
such data were used more efficiently, significant poten-
tial would be uncovered in reaching performance targets
currently associated with gaps between design and actual
performance (de Wilde 2014). The target of this research
effort is to bring knowledge from previous projects into
future design environments to achieve both a sustainable
end product and a holistic sustainable design process. Pre-
vious works also investigated how Knowledge Discovery
in Databases (KDD) (Fayyad et al. 1996) can be used to
retrieve patterns and association rules from available build-
ing data (Petrova et al. 2018a,b). These works also showed
how it is possible to build a knowledge graph that includes
(1) semantically rich building data (topology, properties,
etc.), (2) 2D and/or 3D geometry, (3) sensor data, and
(4) motifs and association rules obtained from the sensor
data. The resulting graph provides a valuable resource
for evidence-based design recommendations. Therefore,
the objective of the current article is to investigate the po-
tential of linked data-based recommendation retrieval in
the design environment, including performance patterns
discovered in sensor data, thereby utilizing the available



and ever-growing knowledge bases to achieve an evidence-
based design process.

Linked data-based recommender systems for improv-
ing sustainable design decision-making

This work explores the possibility of building a system
that relies on knowledge disocvered in building data and
stored in knowledge graphs to make recommendations to-
wards the design team. Considered here is evidence-based
feedback in response to design requirements, yet the rec-
ommender system is conceived as user-centered and can
provide any feedback requested by querying the available
knowledge base(s). Recommender systems can be sub-
divided in content-based and graph-based (Musto et al.
2017), where content-based systems provide recommen-
dations based on direct similarity and graph-based ones
link user nodes to user-tailored recommendations.

Several research efforts investigate recommender systems
based on linked data and the wealth of data provided by
the Linked Open Data (LOD) cloud!(Oliveira et al. 2017,
Musto et al. 2017). Research in the area of LOD-based
recommendations takes its roots in the field of ontology-
based recommender systems introduced by Middleton
etal. (2004). When linked data and ontologies are used for
the disambiguation of content, recommendation systems
become semantics-aware (Boratto et al. 2017). The use of
linked data for user-centered recommendations was intro-
duced by Passant (2010), who proposed a recommender
system based on semantic similarity calculations. This re-
search relies on a set of measures to compute the semantic
distance in linked data, thus exploiting the abundance of
links among the resources. Recent works (Oliveira et al.
2017, Boratto et al. 2017) typically follow the software
architecture displayed in Figure 1 where user profiling is
on focus.

Recommender systems nowadays are usually associated
with user profiling and recommendations based on pre-
vious interactions, social relations, likes, etc. The aim
is to match the user’s demands (profile) with the high-
est possible level of similarity, while still diversifying the
recommendations. In the case of building design, the simi-
larity matching aspect should also be the starting point, but
it should be equally balanced with diversification driven
by design and performance requirements. For example,
if a user indicates high interest in residential nearly zero-
energy buildings (NZEB), the recommender system should
also be able to suggest other NZEB building types or other
residential building types, etc. Of course, the richer the
original dataset, the easier it is to obtain and make alter-
native recommendations.

Recommendation engines are not unknown to the AEC

thttps://lod-cloud.net/
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Figure 1: Semantics-aware content-based recommender
system (based on Boratto et al. (2017))

industry. However, these usually suggest predefined ob-
jects hosted in a database when a certain level of similarity
with the current design is achieved (content-based). As a
result, one of the fundamental goals of this research is to
investigate the level of feasibility for application of linked
data-based recommendations utilizing dynamic knowl-
edge bases in changing context. The dynamic knowledge
bases can be new buildings projects, which may include
continuous incoming streams of sensor data and new LBD
graphs. The changing context then refers to continuously
updating user profiles.

To achieve the above-stated objectives, this paper starts
with a state of the art review in the areas of KDD, semantic
web technologies and data stream processing. The article
continues with the approach uses to achieve the objec-
tives of the current study. We then outline the necessary
steps towards a linked data-based recommender system
for improvement of decision-making in sustainable build-
ing design and perform initial tests. Finally, the paper
discusses the results, presents the main conclusions and
outlines future work.

State of the Art

Knowledge Discovery in Databases (KDD) according
to data type and purpose

Fayyad et al. (1996) define KDD as an overall process, in
which knowledge is the end product of data-driven dis-
covery. They outlinee five main steps, namely selection,
pre-processing, transformation, data mining and interpre-
tation/ evaluation of the results. In that context, Hand et al.
(2011) define data mining as "the analysis of large obser-
vational datasets to find unsuspected relationships and
summarise the data in novel ways so that data owners can



fully understand and make use of the data". Fayyad et al.
(1996) also summarise six main data mining categories,
i.e., classification, clustering, association rule mining, re-
gression, summarization and anomaly detection. Han et al.
(2012) divide these into two main categories: predictive
and descriptive. Descriptive analystics use data aggrega-
tion and mining to provide insight into the past and make
it interpretable by humans. Predictive analytics use statis-
tical models and forecasting to understand the future and
provide actionable insights. With regards to the input,
Lausch et al. (2015) distinguishes between (numerical and
categorical) data, text, web, media, time series and spatial
data mining.

Knowledge discovery in Architecture, Engineering and
Construction

Petrova et al. (2018¢) provide an extensive definition of
KDD approaches according to the type of building data
(semantic BIM data, geometric data, sensor data, etc.)
and the knowledge discovery purpose. Due to the abun-
dance of spatio-temporal data, the AEC industry can bene-
fit from mining temporal data (time series) and spatial data.
Shekhar et al. (2010) rightfully indicates that extracting in-
teresting patterns and associations from such complex and
multidimensional data with plenty of dependencies and
spatio-temporal correlations is more difficult than mining
traditional numeric and categorical data. In AEC, spatio-
temporal data mining approaches can be valuable in cases
where spatial data is augmented with time series data from
sensor networks in buildings.

Data mining applications for building performance im-
provement and sustainable building design usually relate
to energy use and demand prediction (Wang & Srinivasan
2017), prediction of occupant behavior (D’Oca & Hong
2014), fault detection for building systems (Cheng et al.
2016), improvement of building operation and control
strategies (Xiao & Fan 2014), as well as discovering and
explaining energy use patterns (Miller et al. 2015). Other
researchers have investigated the use of semantic data mod-
elling, neural networks and data mining for building en-
ergy management (McGlinn et al. 2017). As can be seen
from these categories, the use of KDD is usually related
to the improvement of building operation. Using such ap-
proaches to improve future building design processes have
not been investigated in such detail.

Limitations in the application of data mining

"Classic" data mining techniques typically focus on iso-
lated "silo" data. As stated by Lausch et al. (2015), in such
cases, the conclusions remain limited and do not span
interdisciplinary and complex data. Additionally, data se-
lection and treatment resides in the hands of the analyst,
who is responsible for variable selection and data prepa-

ration to fit the needs of the mining algorithms. In case
of incorrect decisions, the results can be influenced nega-
tively, e.g. hidden patterns and novel knowledge may not
be discovered or registered.

Therefore, Lausch et al. (2015) propose to mine data us-
ing linked data technologies. Such an approach allows
opening silos and integrating data across disciplines, and
provides an opportunity for analysis of interdisciplinary
datasets. This broad overview can lead to insightful analy-
ses, especially in a semantically rich domain such as AEC.
Nevertheless, how these analyses are obtained is very dif-
ferent from the methods used in data mining, in the sense
that the linked data realm is governed by queries and rules.
These methods can be considered graph mining or match-
ing techniques, and therefore potentially similar to pattern
recognition. However, the types of graphs and patterns
used in semantic queries and rules are very different from
the patterns uncovered using data mining techniques, and
both should not be perceived as identical.

Knowledge Graphs, Linked Data and the Semantic
Web

Further to the evolutions in KDD, a lot of progress has been
made in the formalization of knowledge using web tech-
nologies. From a web of documents, the World Wide Web
has evolved into a “Web of Data’ (LOD cloud) (Bizer et al.
2009). The term linked data was coined by Tim Berners-
Lee in 20062 and has enabled worldwide publication of
5-star open data3. This implies defining data according to
the Resource Description Framework (RDF)# data model
and interlinking it with other RDF datasets available on
the web. The Web of Data relies on ontologies so that data
is typed and can easily be used in combination with query
and rule languages such as SPARQL. Ontologies can be
defined using RDFS and OWL5 and give ‘meaning’ or
‘semantics’ to the data, thereby constituting the Semantic
Web as conceived in Berners-Lee et al. (2001).

Due to their potential, linked data and semantic web tech-
nologies have received major attention in the AEC indus-
try. A comprehensive overview of this topic can be found
in Pauwels et al. (2017). Among the most notable initia-
tives is the early work on transforming the Industry Foun-
dation Classes (IFC) into an OWL ontology (ifcOWL)
(Pauwels & Terkaj 2016). The ifcOWL ontology was
built to match the original EXPRESS schema as closely
as possible, thus allowing a round-trip conversion process
(lossless conversion). However, this has lead to a very
big ontology, which resembles the IFC schema almost en-
tirely, i.e., difficult to extend, complex, and not modular.

2http://www.w3.org/Designlssues/LinkedData.html
3http://5stardata.info/
4http://www.w3.0rg/TR/2014/NOTE-rdf1 1-primer-20140624/
Shttp://www.w3.0rg/TR/2012/REC-owl2-primer-20121211/



This led to research initiatives aiming at ontologies for
Linked Building Data, which do not rewind to IFC, yet
cover similar ground.
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Figure 2: An example LBD graph.

An ecosystem of smaller domain ontologies is currently
available, each covering parts of what can also be handled
with IFC (Figure 2 and 3). A central Building Topology
Ontology (BOT) Rasmussen et al. (2017) captures terms
as ‘Building’, ‘Site’, ‘Space’, etc. and aims for standardisa-
tion of these terms within the W3C LBD CG. Starting from
BOT, alignments with various domain ontologies (Schnei-
der 2017) can then be made. As a result, the industry
can rely on a modular set of ontologies, yet still have a
stable standard at the core. Besides topology, other on-
tologies in the W3C LBD CG cover products, properties,
and geometry McGlinn et al. (2019).

Semantic Data Mining

Standard data mining algorithms usually use statistical
models on data to discover patterns and provide action-
able insights. According to Lavrac et al. (2011), in these
cases, data is treated as meaningless numbers and attribute
values. In other words, data by itself does not convey any
semantics and needs to be interpreted to present meaning-
ful information, which is usually done by domain experts.
Such processes are associated with an abundance of raw
data, but the underlying knowledge is scarce. Considering
that KDD and data mining are knowledge-intensive pro-
cesses, they can significantly benefit from enrichment by
domain knowledge and the relations between objects. As
further stated by Lavrac et al. (2011), that can be achieved
by adding semantic annotations to the data and use of do-
main ontologies. This concept has caused a paradigm shift
in data mining, expressed in a transition from mining the
raw data to mining the knowledge directly. An overview of
how semantic web technologies can be used in data mining
and KDD is given in Ristoski & Paulheim (2016).

The increased interest in the fusion of data mining and
semantics has also highlighted the main technical chal-
lenges and opportunities that this union presents. For
instance, classic data mining is powerful for extracting pat-
terns and association rules from large traditional datasets.
Yet, as Nebot & Berlanga (2012) state, the different na-

ture of semantic data presents challenges, which cannot
be tackled by traditional machine learning approaches, as
they target mostly homogeneous data composed by trans-
actions (sets of items). Since annotated data does not
follow a rigid structure, instances, which are a part of the
same class may still have a different structure. That causes
a challenge of structural heterogeneity. Together with the
heterogeneity of data sources, this leads to the necessity
of dedicated approaches for pattern discovery in semantic
data. This includes reasoning capabilities that allow in-
ferring the implicit knowledge residing in the ontology it-
self (subClassOf relations, rules, inverse relations, etc.).
For those reasons, researchers have engaged in defining
the pathway towards effective association rule mining in
knowledge bases (Barati et al. 2016).

Storing and processing sensor data

An important body of work in the semantic web domain,
which is also of particular relevance in this paper, lies in
the context of sensors and actuators. Sensor nodes are
placed in precisely determined locations with a particular
purpose of observation, thereby monitoring building use
and performance in a real-time manner. This typically re-
sults in significantly large amounts of data, often captured
in data lakes. Such data can be used in RDF graphs (Se-
mantic Sensor Networks), and thus be directly included as
separate modules complementing the modular LBD cloud.
Example ontologies that can be used for this purpose are
SOSA®, SSN7 and SAREFS.

Calbimonte et al. (2012) state that the heterogeneity of
sensor data sources and environments is an important is-
sue related to the realization of a connected sensor world.
Monitored data is usually represented in different ways by
different networks, and data models and schemas differ
as well. That leads to several compatibility and repre-
sentation issues. To tackle those, research efforts propose
various solutions such as semantic annotation of sensor
data (Sheth et al. 2008), providing ontology-based access
to data (Calbimonte et al. 2010), etc.

Storing the vast amount of data directly in the RDF graph
typically leads to a "swollen" graph, and takes down
query and reasoning performance. Hence, Petrova et al.
(2018a,b) propose to maintain sensor data within their
common non-RDF based data stores, yet link directly from
the RDF graph to the web API providing access to the sen-
sor data. When relying on web technologies for application
development, these HTTP links can be consumed to give
a custom and on-demand access to the raw sensor data.
However, several studies suggest that further opportunities
may arise from using SPARQL queries with streaming ex-

Shttp://www.w3.org/ns/sosa/
7http://www.w3.org/ns/ssn/
8http://ontology.tno.nl/saref/
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tensions to access observations (Calbimonte et al. 2012).
RDF stream processing may give an opportunity to pub-
lish and analyze real-time data streams while avoiding the
"swollen" graph issue and still make sensor data a part of
the LBD knowledge graph. Della Valle et al. (2009) state
that achieving that would require moving from storing data
and querying it on demand ("one-time semantics") to us-
ing continuous queries ("continuous semantics"). Barbieri
etal. (2010) state that focus needs to be put on "stream rea-
soning", i.e., making sense of multiple real-time heteroge-
neous data streams. Llanes et al. (2016) define three main
stages in the publication of RDF streams, i.e. conversion
from sensor data streams to RDF streams, storing RDF
streams, and linking them with other data sources. That
requires the selection of relevant ontologies, defining the
mapping language for conversion, selection of continuous
query languages (e.g. Continuous SPARQL (C-SPARQL)
and SPARQLstream (Barbieri et al. 2010), (Calbimonte
et al. 2012)) and choosing other appropriate datasets to
link to.

Semantic Data Mining and Linked Data for a
Recommender System in the AEC Industry

Conceptual framework

Based on the review, we conclude that in the implementa-
tion of the recommender system (1) knowledge graphs can
be accessed using semantic queries, (2) sensor data can

be mined with traditional data mining techniques, (3) se-
mantic data mining can be performed on the LBD graph,
and (4) RDF graph mining can also be used for pattern
matching in combination with RDF stream processing.

Furthermore, a recommender system can rely on data
sources both without and with explicitly embedded se-
mantics. In the latter case, recommender systems rely
directly on semantic analysis techniques, thereby directly
exploiting the semantics in the linked data graph. In the
current context, in which the modular LBD graphs consist
of both graph data (topology and product data) and non-
graph data (geometry and sensor data), both traditional
and semantic data mining can be used. Mining of raw
sensor data implies discovery of performance patterns by
the use of classic data mining methods. The knowledge
interpretation is strictly related to obtaining understanding
about the performance through the discovered patterns, not
through the raw data. The RDF frequent pattern discovery,
on the other hand, is data structure oriented and considers
the graph predicates instead of data values.

Applying these techniques results in the conceptual sys-
tem architecture in Figure 4. The following sections ex-
plain this architecture focusing on (1) how patterns are
discovered and added to the graph, (2) how user profiles
can be built and benefit from the system, including feed-
back, and (3) how recommendations can be generated.
We present an example for RDF pattern discovery in a se-
mantic data stream by implementing a method suggested



by Belghaouti et al. (2016) and discuss its potential feasi-
bility. Finally, we demonstrate an initial implementation
of a linked data-based recommender system by applying
the concept of Linked Data Semantic Distances proposed
by Passant (2010).

Pattern discovery and representation

First, data about existing buildings is retrieved and trans-
formed into linked data. We hereby suggest to rely on
the overall LBD approach documented eatrlier in Petrova
et al. (2018a,b). This process is displayed on the bottom
right in the system architecture diagram in Figure 4. For
describing sensors, the LBD graph can be enriched with
sensor node instances and sensors, as can be seen in Fig-
ure 2. Listing 1 lists all namespaces and prefixes used in
the following examples.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bot: <https://w3id.org/bot#> .

@prefix buildings: <https://www.example.com/data/buildings/> .
@prefix people: <https://www.example.com/data/people#> .
@prefix 1s: <https://www.example.com/voc/linkset#> .

@prefix bmeta: <https://www.example.com/voc/buildingmetadata#>

Listing 1: Namespaces and prefixes used in the following
examples

As previously indicated, including sensor measurements
can be done by pointing to an SQL store via a Web API
or by including the sensor measurements explicitly in the
graph. In this case, pattern discovery can be done using
traditional data mining, which works with data batches and
uses the previously discussed predictive and/or descriptive
models. As explained in Petrova et al. (2018a,b), the
resulting performance patterns can also be stored directly
in the graph.

Alternatively, it is possible to convert the sensor data
streams into RDF streams and perform semantic data
mining on the resulting graph. Ideally, the RDF graph
is first completed, which requires reasoning through the
data and ontologies, and inferring all implicit data (e.g.
subclassOf relations). To analyze how RDF stream pro-
cessing would affect the recommendation concept, we em-
ploy the method described by Belghaouti et al. (2016), who
identify frequent RDF patterns in RDF streams by map-
ping the graphs to adjacency matrices based on the graph
predicates. Using this method, one is able to construct
bit vectors, which describe the graph structure. Each bit
vector is constructed from the predicates in the graph.
The graph in Figure 2, for example, would lead to a
bit vector (1111) that indicates each of the four pred-
icates (‘rdfs:label’, ’gig:hasSensorNode’, ’rdf:type’, and
"fog:asObj- v3.0-0bj’). All predicates and corresponding
bit vector indices are recorded in a predicate hash table,

which detects the patterns in the streams based on the bit
vectors present in the graphs (e.g. 1111, 11101, 101, etc).
Finally, a graph hash table is constructed, which records
the frequency of occurrence of each bit vector. In this
case, considering that all observations in the stream are
modelled with the same predicates as in Figure 2, only
one pattern would be included in the graph hash table,
even though very diverse observation measurements are
present. This has a big impact on pattern discovery, as
the RDF frequent pattern mining is data structure oriented
and considers the graph predicates instead of data values,
as opposed to traditional data mining, which focuses only
on data values.

User profiling and feedback

User profiling is a required feature for a well-functioning
user-centred recommender system. We have set up the
profiling system in a way similar to the one proposed
in Boratto et al. (2017) (top of Figure 4). At user reg-
istration, a Profile Initiator component fills an RDF-based
User Profile Store. These RDF-based profiles are built
using the FOAF® ontology, and the result is an initial RDF
graph identifying a user and its key metadata (Listing 2).
The user is served recommendations through the Recom-
mendation Filter component. All actions that the user
takes in direct interaction with the recommender system
are logged through a Profile Learner component. These
actions serve as 'feedback’ to the system, and they may
come from a user clicking a ’like’ button, a ’category’
button, an “annotation’ button, or any other form of inter-
action. The Profile Learner component feeds back user
profile data and user logs into the back-end of the recom-
mendation system, which contains the User Profile Store
and the User Log Store. In other words, the User Profile
Store gets modified incrementally under the effect of the
user interactions. The interactions of highest relevance are
those related to recommendations, which are used by the
end user in the project, especially if they respond directly
to specific design requirements and performance targets.

people:EkaterinaPetrova
a foaf:Person ;
foaf:name "Ekaterina Petrova"AAxsd:string ;
foaf:givenName "Ekaterina'"AAxsd:string ;
foaf:familyName "Petrova"A*xsd:string ;
foaf:nick "epetrova"AAxsd:string .

Listing 2: People profile data

Feedback from user interaction goes into the User Logs and
User Profiles, but the links between specific user profiles
and relevant items in the Building Data Store are also
kept, thereby aiming to enable a context-aware system.
This means that we store links between user profiles and
building identifiers in a separate RDF linkset (Listing 3).

http://xmlns.com/foaf/spec/
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Figure 4: System Architecture for a linked data-based recommender system in the AEC industry.

This linkset serves as a hash table with identifiers from
user profiles and the building data repository. Note that
Listing 3 only includes 1s:1ike relations, but other, more
specific relations could be used as well, depending on how
user interaction and feedback is tracked.

people:EkaterinaPetrova
1s:1likes buildings:building_987d706d-877a-4b1d-80{6-6
ee89d856319 ;
1s:1likes buildings:building_af41d889-£f50c-456e
-9625-96655150838d .

Listing 3: Linkset between buildings and people.

We have applied this principle to the Building Data Store,
User Profile Store, and Linkset Store as follows. Through
user interaction and KDD, implicit data is retrieved about
the buildings in the building data repository. As such,
the buildings can be enriched with metadata tags. The
result is displayed for two example buildings in Listing 4.
Whereas this example only includes four simple meta-
data tags (buildingType, designedBy, energyLabel,
sustainabilityCertificate), many more metadata
tags can be used, e.g. category, occupancy data, mined
performance patterns, design requirements, energy source,
etc. These metadata can be used to form categories of de-
sign references, to compose queries in the database, to sort
search results in a certain dimension, etc.

buildings:building_00dd6c87-6a6e-£482-7490-e6613659708a
a bot:Building ;
bmeta:buildingType bmeta:theater ;
bmeta:designedBy people:architectX ;
bmeta:energylLabel bmeta:A ;

bmeta:sustainabilityCertificate bmeta:LEEDPlatinum .

buildings:building_2e@dcclc-b981-4c47-adb4-2b9887£10481
a bot:Building ;
bmeta:buildingType bmeta:theater ;
bmeta:designedBy people:architectY ;
bmeta:energylLabel bmeta:A ;
bmeta:sustainabilityCertificate bmeta:DGNBGold .

Listing 4: Example building data in TTL format.

In summary, the system holds three RDF-based data stores
(besides the User Log Store): the User Profile Store, the
Building Data Store, and the Linkset Store. It is now
possible for an end user to query each of these stores for
relevant data. For example, an end user may query for all
buildings of a particular type, category and/or with a spe-
cific energy label (Listing 5). In this case the bmeta tags
are used in the query. Of course, it is also possible to in-
clude user preference (Linkset Store) or user profile (User
Profile Store) data in the queries. The returned results can
be displayed to an end user, who is then able to sort the
results using the available attributes and categories.

SELECT *
WHERE {
?b a bot:Building .
?b bmeta:buildingType bmeta:theater ;
?b bmeta:energylLabel bmeta:A .
}

Listing 5: Query for buildings of a particular building
type.



Generating recommendations

As stated in the state of the art section, recommender sys-
tems can rely on the computation of semantic distance,
i.e. the semantic relatedness between resources. Instead
of limiting only to queries from within the end user en-
vironment, our recommender system should also make
suggestions of buildings that are semantically close to, for
example, a building that is considered to be most relevant
to an end user at some point in time. Such buildings are
the generated recommendations.

A set of measures were proposed in Passant (2010) to
represent the ‘Linked Data Semantic Distance’ (LDSD)
between two concepts (values between 0 and 1). This in-
cludes Direct, Indirect, and Combined Semantic Distance
(LDSD,, LDSD;, LDSD,), each either weighted or not.
These semantic distances are used in recommender sys-
tems to find out what else users may like based on their
user profile, search behavior, favorites, etc. The smaller
the semantic distance between two related concepts, the
higher the related concept is ranked in the set of n top
related concepts or recommendations.

The semantic distance can be computed using all out-
going and incoming links of two concepts. For ex-
ample, two different buildings might both be of type
theater, which connects them to the same node for
the bmeta:buildingType predicate, and makes them se-
mantically closer. Determination of LDSD for recommen-
dations starts as soon as an end user clicks a building from
a result set that was previously returned with a simple
query. In other words, the Recommendation Filter com-
ponent is set up to look for ’bot:Building’ objects that are
semantically close to each other. The calculation hereby
relies on all incoming and outgoing links for specific build-
ings, which are linked in the Building Data Store and the
Linkset Store. Essentially, the simple indirect distance as
a matrix between one building and all related buildings is
calculated (Passant 2010).

This is illustrated in a simple example in Table 1, which
shows the semantic distances for one of the buildings in the
Building Data Store. As the bot:Building tag is present
for all concepts, it is disregarded. Of course, in this limited
example with 6 buildings and 3 relations (buildingType,
designedBy, energyLabel), values are quite far apart
(1/3, 172, 1, or 0), because only three links are considered.
In an actual Building Data Store, semantic distances are
much more interesting and diverse.

For each of the retrieved buildings, any available data can
be displayed. This may also include sensor measurements
and patterns found in them, metadata and user data in
support of the end user, etc. Of course, this data needs to
be displayed in an appropriate end-user interface, which is
out of scope here.

Challenges and limitations

In terms of effectiveness of the proposed system, potential
challenges need to be overcome, which can be related to
user behaviour or the method that the recommendations
are based on. Besides the knowledge base, the users play
an important role in a recommender system. Important
to consider are changes over time in the user profiles and
preferences, which need to be taken into account contin-
vously. End users may have similar profiles, but differ-
ent behaviour and preferences depending on their context.
These phenomena can affect the accuracy of a recom-
mendation system, as the wrong user preferences may be
considered. Anomalous behaviour such as disliking of
recommendations also needs to be analysed and factored
in. Another limitation may stem from the fact that despite
being efficient, the LDSD approach only computes the se-
mantic distance between two resources that are directly or
indirectly linked through an intermediate resource. There-
fore, enhanced LDSD algorithms may need to be used to
expand the range beyond the two links distance. Also, the
current system only considers semantic distances between
buildings. Other semantic distances may be used as well,
to configure and refine the recommendations.

Conclusions

Recent years have shown a rapid increase in technology
uptake aiming to help reduce the negative environmental
impact from buildings. This research attempts to min-
imise the negative contribution by informing the design
with evidence-based feedback stemming from the existing
building stock through a recommender system. Research
on recommender systems has a long history, but is sel-
dom implemented in the AEC industry. We attempt to
overcome this challenge with data mining and linked data
technologies. The article presents a state of the art review
in the areas of KDD, semantic web technologies, stream
processing and recommender systems. We investigate how
to make sensor data streams efficiently available to the
end user in addition to knowledge discovered in the data
through semantic sensor technologies, web API connec-
tions, and/or sensor data stream processing. We outline the
necessary steps towards a linked data-based recommender
system, thereby drawing on the techniques that have been
identified as most promising in the literature review. The
software architecture of the proposed system consists of
triple stores, as well as mechanisms for feedback handling
and recommendations, data mining, and user interaction.
Future work should focus on further implementation in
practice including identifying how metadata tags can be
inferred in the most intelligent way. Furthermore, the way
sensor data are combined with semantic data, so that they
can be used effectively in recommendation filtering, needs
to be further investigated.



Table 1: Simple indirect semantic distances computed for https://www.example.com/data/buildings/building_00dd6¢87-

6a6e-f482-7490-e6613659708a.

Building Cio Cii LDSD
https://www.example.com/data/buildings/building_2e0Odcclc-b981-4c47-adb4-2b9887f10481 2 0 0.3333
https://www.example.com/data/buildings/building_987d706d-877a-4b1d-80f6-6ee89d856319 1 0 0.5
https://www.example.com/data/buildings/building_43576e80-cf8c-11e1-8000-68a3c4d40f59 1 0 0.5
https://www.example.com/data/buildings/building_af41d889-f50c-456e-9625-96655150838d 0O 0 1.0
https://www.example.com/data/buildings/building_aac3427f-eeb0-460c-bad7-14fd44c8be74 0 0 1.0
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