Conference Agenda
| Session | |||||
WG2: Aerosols and clouds in polar regions (IV)
| |||||
| Presentations | |||||
10:45am - 11:00am
FR1-5: 1 Contribution of free and combined amino acids and nucleobases to the organic matter on Antarctic peninsula aerosol particles and their influencing factors Leibniz Institute for Tropospheric Research (TROPOS), Germany Free and combined amino acids and nucleobases were measured in extracts from Antarctic marine aerosol and water samples. Transfer processes were studied, revealing a gap for atmospheric biotic and abiotic processing of the analytes. Samples were also investigated for mass, back trajectories, Ion concentrations and OC/EC or WSOC.
11:00am - 11:15am
FR1-5: 2 Study of the mineral dust in the Antarctic plateau: the SIDDARTA project 1Department of Physics and Astronomy, University of Florence and INFN; 2Department of Chemistry, University of Turin; 3Department of Chemistry and Industrial Chemistry, University of Genoa; 4Department of Chemistry, Biology and Biotechnology, University of Perugia; 5Department of Chemistry, University of Florence The SIDDARTA project aims to investigate present-day sources and transport processes supplying mineral dust to the Antarctic plateau. The project includes the study of the composition of mineral dust at Dome C (Concordia Station), both in the form of atmospheric particulate matter (PM10), surface snow and snow-pit samples (to achieve a multi-annual record of dust deposition), as well as the resuspension and analysis of soil samples previously collected in Potential Source Areas (PSA) in Australia and Southern South America. The analysis included measurements of elemental composition, major and trace metals, and isotopic composition of Pb and Sr.
11:15am - 11:30am
FR1-5: 3 Preliminary Findings on Microbial Life in Antarctic Precipitation: Insights into Atmospheric River-Associated Microbes 1CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, Porto, 4450-208, Portugal; 2Department of science, University of Porto, Porto, 4169-007, Portugal Antarctica, the coldest and driest continent, is crucial for global climate regulation. Recent warming trends, especially in West Antarctica and the Antarctic Peninsula, have increased surface melting and altered precipitation patterns. Atmospheric Rivers (ARs), though infrequent, contribute significantly to precipitation, ice shelf destabilization, and microbial transport. To study microbial communities in precipitation over the northern Antarctic Peninsula, we conducted a culture-dependent analysis on samples from expeditons during 2022 and 2024. Using DNA sequencing and back-trajectory analysis, we identified viable microbial taxa and their sources. These findings provide insights into the role of ARs in microbial dispersal and ecosystem impacts.
11:30am - 11:45am
FR1-5: 4 Summertime particle concentrations in coastal Antarctica from aircraft and tethered balloon in situ observations 1Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Sion, Switzerland; 2Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; 3Department of Space Research and Technology, Technical University of Denmark, Kongens Lyngby, Denmark Clouds enhance Antarctic Ice Sheet melting through thermal-infrared emissions but remain poorly understood and misrepresented in models. Inaccurate treatment of ice-nucleating particles and cloud condensation nuclei impacts cloud persistence and radiative effects. Surface aerosol observations represent local features, while satellite sensing struggles with low concentrations. To address this, two campaigns in 2024-2025 deployed a tethered balloon for vertical profiles at Neumayer III Station and a Twin Otter aircraft for a 15000 km transect. These platforms measured aerosols concentrations, providing insights into regional variability, with the aim of improving the representation of aerosol-cloud interactions in the Antarctic lower troposphere.
11:45am - 12:00pm
FR1-5: 5 From phytoplankton to clouds – understanding the complex atmospheric processes in the pristine region of the Southern Ocean and Antarctica. 1CSIRO Environment, Melbourne, Victoria, Australia; 2Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia; 3Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, United States of America; 4College of the Environment, University of Washington, Seattle, Washington, United States of America; 5Bureau of Meteorology, Melbourne, Victoria, Australia; 6Monash University, Melbourne, Victoria, Australia; 7Queensland University of Technology, Brisbane, Queensland, Australia The Southern Ocean and Antarctica are remote from anthropogenic influence, making the region one of the most pristine in the world and a unique testbed for probing natural atmospheric processes. Understanding these “baseline” conditions is critical for reducing the uncertainty in our climate models. A recent effort, PICCAASO, was initiated to coordinate the over 20 international projects funded since 2020 aimed at investigating the complex natural interactions between ocean biogeochemistry, trace gas emissions, aerosols and clouds. In this presentation, early results from several Australian-based PICCAASO-themed campaigns (MISO, CAPE-k, COAST-k and Denman Marine Voyage) in the region are presented.
| |||||