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Abstract
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to such misconduct. We also test the model empirically on a set of government bond futures
contracts using a complete EUREX ultra-high-frequency dataset. Our findings show that
cross-product manipulation is feasible across bond futures with different underlying maturities,
issuers and contract expiry dates. The results suggest that cross-product manipulation might
be widespread despite an increasing crackdown by regulators and prosecutors.
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1 Introduction

Cross-product manipulation involves manipulation of one financial product with the intent to profit

from the subsequent reaction in a different but related product. Several high-profile cases have been

brought to light in recent years – suggesting that a worldwide regulatory crackdown only has started

to scratch the surface of this form of financial market misconduct (AMF, 2019; DOJ, 2021; CFTC,

2022).

Many markets are closely related. Consequently, market participants follow developments in a

wide range of related products for hedging and arbitrage purposes. Problematically, a manipulator

may take advantage of this by, say, spoofing in one market and leaving a genuine resting order in

another market that other traders are likely to monitor simultaneously. Among financial markets,

the global fixed income market is extremely connected (Ilmanen, 1995; Sutton, 2000; Dahlquist and

Hasseltoft, 2013) – making it particularly vulnerable. This is echoed in a document published by

the UK financial regulator FCA (2018), stating that “some analysts [...] take a narrow approach,

reviewing only the activity in the product which triggered the alert and not considering other trading

in correlated products. Because many fixed income products are inter-connected, consideration of

trading activity in correlated products - such as cash vs futures, or products with different durations

- is an important element of effective surveillance.”

The list of cross-product manipulation cases is growing, and high-profile examples include cross-

product ramping and squeezing by Credit Suisse in the UK Gilt (government bond) market (FCA,

2014), cross-product pump-and-dump in European government bonds and bond futures by Morgan

Stanley (AMF, 2019) and cross-product spoofing in US Treasury bond and bond futures contracts

by NatWest (DOJ, 2021). Notably, this form of misconduct can involve both trade-based and

order-based strategies.

Problematically, in the absence of whistle-blowing, cross-product manipulation is notoriously

difficult to detect. As Stenfors et al. (2023) point out, a cross-product manipulator is significantly

less likely to get caught as relatedness increases the number of manipulative pathways exponentially.

This dramatically reduces the risk of detection and raises the challenges for regulators, lawmak-

ers and compliance departments. Furthermore, there is neither a specific theory on cross-market

manipulation, nor a successful tool or methodology for detection.

In this paper, we tackle this issue by developing a simple but robust model. The model has two

1



crucial features. First, it quantifies the transmissibility between a potentially manipulative tactic in

Product A (the source product) and the immediate reaction in Product B (the response product).

Second, it quantifies how far in depth order volume matters for the transmissibility. The purpose

of this is to assess whether two products could be susceptible to cross-product manipulation. We

then test the model empirically on a set of European government bond futures contracts using a

complete EUREX ultra-high-frequency dataset obtained via BEDOFIH.

Our findings show that cross-product manipulation is feasible across bond futures with differ-

ent underlying maturities, issuers and contract expiry dates. However, creditworthiness, market

liquidity, maturity difference, and depth play an essential role in the strength and direction of

the transmission from the source to the response product. Overall, the results suggest that cross-

product manipulation may be more widespread than hitherto brought to light by regulators and

prosecutors.

Our paper addresses a specific form of price discovery and can, therefore, be read more generally

in terms of its contribution to market microstructure literature on limit order books and limit order

submission strategies (see, for instance, Barclay and Warner (1993); Chan and Lakonishok (1995);

Fong and Liu (2010); Lo and Sapp (2010); Ranaldo (2004)). It is particularly related to work

on financial market misconduct and abuse (Alexander and Cumming, 2020; Cumming et al., 2011,

2015) and order-based manipulation (Lee et al., 2013; Stenfors and Susai, 2021; Stenfors et al., 2023).

Moreover, given the topicality of the subject matter at hand, recent publications by regulators and

lawmakers also make up a bulk of the relevant literature (AMF, 2019; DOJ, 2021; CFTC, 2018,

2020, 2022; Securities and Exchange Surveillance Commission, 2018; Financial Services Agency,

2019).

The remainder of the paper is structured as follows. Section 2 provides an overview of cross-

product manipulation from a theoretical and practical perspective. Section 3 describes the dataset

and variables. Section 4 outlines the model and approach. Section 5 discusses the empirical results

and Section 6 concludes.
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2 Related cases and literature

2.1 Order-based cross-product manipulation

The rationale behind cross-product and cross-market manipulation can be explained through the

lens of market micro-structure theory.

Market orders and transactions act as signals about market supply and demand, and provide

hints about the likely future price direction in the short run. Limit order submissions and cancella-

tions, despite not involving transactions per se, shape the depth and contours of a limit order book

and also influence the expected price in the future. The following hypothetical scenario may serve

as an illustration.

Suppose the market for Bond A on an electronic trading platform is made up of buy orders

amounting to $10 million at 120.00 and sell orders of $10 million at 120.05. Assume then that a

new trader enters the market with the desire to sell $5 million at the highest possible price. Several

limit order submission strategies are available. The trader could, for instance, split the sell order

into a string of $1 million orders. The logic behind order-splitting strategies and stealth trading is

that a smaller order size is less likely to trigger a reaction by other traders (Barclay and Warner,

1993; Chan and Lakonishok, 1995; Chou and Wang, 2009; Engle et al., 2012). An alternative would

be to submit the sell order deeper into the limit order book, say at 120.07, in the hope that a

buyer of a large amount will emerge. However, the distance to the prevailing market price will

have an influence on the probability of execution (Cao et al., 2009; Griffiths et al., 2000; Ranaldo,

2004). Either way, the purpose would be to prevent traders on the current bid side from cancelling

their orders at 120.00 and resubmitting them at lower levels (due to free-option risk), or competing

traders on the ask side from improving their sell orders at 120.05 (due to non-execution risk) (Fong

and Liu, 2010; Liu, 2000). Thus, from a trader’s perspective, a genuine limit order submission

strategy involves a careful consideration of order size and aggressiveness with the aim to minimise

the market impact and simultaneously maximise the probability of execution (Lo and Sapp, 2010).

The aim of an order-based manipulative strategy such as spoofing is essentially the opposite.

It involves an assessment of appropriate order size and aggressiveness to trigger a market impact

without any intent to execute the spoof orders at all. A spoofing strategy would consist of a

combination of a genuine resting order and a spoof order. For instance, the trader may opt to

submit a genuine sell order of $5 million at 120.04. Then, a $50 million (spoof) buy order is
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submitted at 119.97. The intent of the spoof order is a) that it will be cancelled and b) that it

creates an artificial perception of supply and demand that is taken advantage of. Due to the large

(spoof) order size, other traders might interpret the $50 million buy order at 119.97 as if the price

of Bond A is likely to increase. Consequently, a successful spoof would mean that the genuine sell

order of $5 million at 120.04 is filled. Immediately after that, the trader cancels the $50 million

spoof buy order at 119.97, and the spoofing strategy is completed.

As the example above illustrates, spoofing is a low-cost and low-risk strategy compared to

trade-based manipulative tactics such as ramping, which involves accumulating a trading position.

Importantly, regardless of how large or how many the spoof orders are, they are never intended to

be executed. Theoretically, this suggests that spoof orders are likely to be large (to induce a market

reaction) but non-aggressive (to avoid execution). The purpose of submitting a spoof order is to

cause other traders to react as if genuine price-moving information has entered the market, even

though it is purely artificial. This is where spoofing goes beyond being a genuine trading strategy

and, instead, becomes fraudulent or, as in some countries including the United States, explicitly

illegal. Because it creates a false impression of the supply and demand in the market, spoofing can

be seen as a form of market manipulation (Cumming et al., 2011, 2015).

Hitherto, algorithmic traders and major banks appear to be overrepresented in the regulatory

cases and convictions related to spoofing (CFTC, 2018, 2020; Securities and Exchange Surveillance

Commission, 2018; Financial Services Agency, 2019). A spoofer benefits from being able to quickly

and repeatedly submit and cancel orders on exchanges or electronic trading platforms. Here, al-

gorithmic traders have the edge over human traders. At the same time, large banks often act as

primary dealers or market makers in a range of OTC products that have been shown to be sus-

ceptible to spoofing tactics. For instance, in 2020, US regulators fined JP Morgan a record $920

million for spoofing and manipulating precious metals and US Treasury futures contracts. Notably,

the bank’s activity had “involved hundreds of thousands of spoof orders” (CFTC, 2020).

Spoofing is not only difficult to detect. It may also be challenging to demonstrate malicious

intent. However, what really widens the scope of manipulative possibilities is the universe of

financial market products that open up doors to cross-product manipulation. It is widely known that

numerous financial market assets, instruments and indices are closely connected and related. This

presents traders with useful hedging opportunities. Problematically, it also makes markets more

susceptible to cross-product and cross-market manipulation. Consider the previous hypothetical
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example of spoofing involving Bond A. The market is 120.00-120.05 with $10 million on each side

of the electronic limit order book. A spoofer then enters the market and submits a genuine sell

order of $5 million at 120.04. Now suppose there is a Bond B closely related to Bond A. Market

participants are aware that the relatedness is high, so they tend to follow the developments in both

markets in tandem. For simplicity, let us assume that the market for Bond B is 110.00-110.03 with

$10 million on each side of the order book. An example of a cross-market spoof would involve

submitting a buy order of $60 million at 109.98 for Bond B (the spoof order). Again, the best

bid/ask price for Bond B remains unchanged at 110.00-110.03. However, other traders notice the

substantial increase in demand from the bid side of Bond B, which is closely related to Bond A. As

a result, they anticipate not only that the price of Bond B will increase but also the price of Bond

A. A successful spoof would imply that the genuine order in Bond A gets executed, whereas the

spoof order in Bond B is cancelled immediately thereafter.

An illustration of how order-based cross-product manipulation has played out in real-life is

provided by a recent case by the US Department of Justice (DOJ). On 21 December 2021, NatWest

pleaded guilty to fraud in the US and agreed to pay a $35 million fine (DOJ, 2021). The reason

can briefly be summarised as follows.

Between January 2008 and May 2014, NatWest engaged in spoofing in the US Treasury (i.e.

government bond) futures market. Separately, in 2018, NatWest traders also engaged in spoofing

in the US Treasury cash market. According to the DOJ, NatWest traders placed “orders with

the intent to cancel those orders before execution, attempting to profit by deceiving other market

participants by injecting false and misleading information regarding the existence of genuine supply

and demand in the market.” The spoof orders were “designed to artificially push up or down the

prevailing market price” and in some instances, the traders “took advantage of the close correlation

between US Treasury securities and US Treasury futures contracts and engaged in cross-market

manipulation by placing spoof orders in the futures market in order to profit from trading in the

cash market.”

Documents released by the DOJ provide the following example of cross-market manipulation.

On 14 May 2014 at 12:33:44.593 p.m., a trader placed a spoof order to buy 210 Ultrabond futures

contracts at $149.59375. The underlying asset of the CME Ultrabond future is a US Treasury

bond with a remaining maturity of at least 25 years. The contract unit is a face value of maturity

of $100,000, so 210 contracts are equivalent to $21,000,000. All spoof orders were cancelled 3.131
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seconds later. In the meantime, the traders had filled genuine orders to sell $2,000,000 30-year

US Treasury bonds. According to the DOJ, the intent behind the spoof orders was to “create the

illusion of demand in the futures market, deceive other market participants, and artificially move

the correlated cash market price higher.”

As can be seen, single-product and cross-product manipulation are similar in terms of the

attributes of the manipulative strategies and how they relate to the economic and psychological

dynamics of the market. The key difference between single-product and cross-product manipulation

is how the latter requires a consideration of the relatedness between the products and markets

involved.

2.2 Trade-based cross-product manipulation

Spoofing and layering are order-based manipulation strategies that strive for a reaction or short-

term momentum in the market that can be profited from by the manipulator. The intent is to move

the market, but also to cancel the manipulative orders. By contrast, trade-based manipulation such

as ramping, squeezing, pump-and-dump or triggering stop losses involve genuine buying or selling

to cause the market price to move in certain direction (Allen and Gale, 1992; Stenfors, 2020). The

manipulative element stems from the “intentional conduct that causes market prices to diverge from

their competitive level” (Pirrong, 2017).

Like order-based manipulation, trade-based manipulation can involve a combination of products

and markets. Consider the hypothetical example in the previous section concerning related bonds A

and B. The market for Bond A is 120.00-120.05 with $10 million on each side of the limit order book.

A manipulator then enters the market and submits a genuine sell order of $5 million at 120.04. The

market for Bond B is 110.00-110.03 with $10 million on each side of the order book. Instead of

submitting a spoof order inside the order book with the intent to cancel it, the manipulator could

embark on a ramping strategy. Aggressively bidding above 110.00, or even buying at 110.03, might

trigger other traders to lift the offer at 120.04 in Bond A – given that the products are closely

related.

An illustration of how trade-based cross-product manipulation has played out in real-life is pro-

vided by a recent case by the French regulator Autorité des Marchés Financiers (AMF) (AMF,

2019). On 4 December 2019, the AMF fined Morgan Stanley €20 million for manipulating gov-

ernment French government bonds (OATs), Belgian bonds (OLOs) and French government bond
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futures contracts (FOATs). The reason can briefly be summarised as follows.

On 16 June 2015, between 09:29 and 09:44, Morgan Stanley purchased a significant number

of FOATs and German government bonds futures contracts (Bund Futures (FGBLs) and Buxl

Futures (FGBXs)) on EUREX. Immediately thereafter, at 09:44, Morgan Stanley sold 17 different

OATs for €815 million and 8 OLOs for €340 million. The transactions for the cash bonds took

place at MTS France, BrokerTec (an electronic trading platform) and MTS Belgium. According

to AMF, Morgan Stanley had obtained “abnormal and artificial” price levels for the FOAT, OAT

and OLO transactions. The regulator also argued that “the purpose of the FOAT acquisitions

was to influence a price increase of this financial instrument, in order to cause an abnormal and

artificial increase in the price of the OATs and OLOs, because of the correlation links between

these instruments, immediately before they were sold.” Further, the activity “constituted price

manipulation through the use of a form of deception or contrivance” in part because it “had the

effect of giving other participants a distorted picture of the state of the French sovereign bond

market.” However, according to AMF, the purpose of the activity in the German government bond

futures (FGBL and FGBX) was not to manipulate the price of OATs. Hence, they were not included

in the enforcement notice. The Morgan Stanley case demonstrates that bonds or bond futures

with different underlying issuers and credit ratings may be sufficiently related for cross-product

manipulation attempts.

However, an earlier case by the FCA illustrates that bonds of different maturities also may

be susceptible. On 20 March 2014, FCA fined Credit Suisse trader Mark Stevenson £662,700 for

market abuse and prohibited him from any further work in the regulated financial services industry

(FCA, 2014). The reason can briefly be summarised as follows.

On 10 October 2011, between 09:00 and 14:30, Stevenson bought £331 million of the UKT

8.75% 2017, a UK government gilt (below referred to as “the Bond”). The trading occurred on a

day when the Bank of England announced that they would buy bonds from market makers as part

of the central bank’s quantitative easing programme. As a result, the central bank bond buying,

which would take place between 14:15 and 14:45, was openly disclosed.

Stevenson accumulated a substantial position in the Bond during the day. This was partly done

by outright purchases. An even larger proportion was bought through spread trades or switches

involving related bonds. According to the FCA (2014), “Mr Stevenson deliberately traded in an

aggressive style when purchasing the Bond which gave a false or misleading impression as to the
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price of the Bond and secured the price of the Bond at an abnormal or artificial level.” The trading

activity in the Bond was substantial in several respects. Stevenson’s purchases accounted for 92%

of the IDB market in the Bond on that day. The purchases represented around 2,700% of the

average daily trading volume during the previous four months. Moreover, the Bond was illiquid

compared to other related bonds. The average daily trading volume for the Bond amounted to £9

million during the previous five months. The closely related bonds averaged £74.5 million to £478.8

million.

[INSERT FIGURE 1 AROUND HERE.]

As seen in Figure 1, the activity by Stevenson caused the bond price [yield] to go up [down]

compared to related bonds. According to the FCA, “Mr Stevenson’s trading led to movements in

the yield spread between the Bond and Comparator Bonds which were significantly outside their

typical or normal ranges and the price levels for the Bond which resulted from this activity were

abnormal. These abnormal price levels were also artificial, as there was no legitimate reason for the

trading which led to the abnormal prices.”

Although cross-product manipulation was not specifically mentioned in the Final Notice pub-

lished by the FCA, two critical aspects stand out from this case that are crucial for our investigation.

First, the case demonstrates that a manipulated price is easier to obtain when the product is illiq-

uid or thinly traded. For cross-product manipulation, this implies that the source product is likely

to be more liquid than the response product. Second, a manipulator can use related products for

gearing (e.g. via spreads), while still maintaining relatively low market risk exposure. Referring to

the previous example involving the two hypothetical bonds, a trader could, for instance, submit a

spread order to sell $100 million of Bond A and buy $100 million of Bond A at 10.00 (120.00-110.00).

Such a spread order or trade would be regarded as a part of a genuine trading, arbitrage or hedging

strategy. However, if intended to create an artificial perception of supply or demand or to cause a

market price to diverge from its competitive level, it would constitute market manipulation.

To sum up, there are numerous trade-based and order-based manipulation strategies. Most

strategies can also involve more than one product or market, with possible combinations growing

exponentially once all related products are considered. To continuously calculate which product

combinations could be at risk to which manipulative tactics at which moment in time is an insur-

mountable task from a computation perspective. Nonetheless, in the following sections, we develop
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and test a simple one-size-fits-all model that can be used to “take the temperature” on any single-

or cross-product combination to help determine its susceptibility to market manipulation.

3 Data and variables

3.1 Data

This paper uses data from EUREX, the main trading venue for European government bond futures.

The data has been obtained via BEDOFIH, and details every trade and volume change for EUREX

securities and derivatives during 2020. Depth information is included to the 10th level for most

products. We test the model on German, French and Italian benchmark government bond futures

(see Table 1).

[INSERT TABLE 1 AROUND HERE.]

The selected products are related from several dimensions. First, they share the same currency

(EUR). Second, FGBL, FOAT and FBTP have the same underlying maturity (around 10 years).

Indeed, several studies have shown that the international co-movement between long-term bonds

has been shown to be stronger than for short-term bonds (Jotikasthira et al., 2015; Kumar and

Okimoto, 2011; Stenfors et al., 2022a). Third, FGBL and FGMB have the same underlying issuer

(Germany) and, consequently, underlying credit risk. However, French bond yields often track the

more liquid German bonds, which act as a benchmark for EUR-denominated bonds. The data set

enables us to explore the susceptibility of cross-product manipulation across underlying contract

maturities (e.g. 10-year German FGBL vs 5-year German FGBM) and across issuers of different

creditworthiness (e.g. 10-year French FOAT vs 10-year Italian FBTP).

Furthermore, the paper considers activity on 2 March 2020, i.e. a week before the expiry of

the Mar 20 futures contract. This is a period when both the Mar 20 and Jun 20 contract for each

product is very liquid, which permits us also to analyse the relationship between different underlying

contract expiry dates.1 Table 2 provides an overview of the trading activity on 2 March 2020. As

can be seen, the European government bond futures market on EUREX is extremely large. For
1There are four bond futures contracts per year (Mar, Jun, Sep and Dec), and the nearest, second-nearest (and

sometimes third-nearest) contracts are traded at any moment in time. The last trading day is two exchange days
prior to the delivery day of the relevant maturity month. The delivery day is the tenth calendar day of the respective
quarterly month, which means that the period studied includes the contract rollover. The fixing, expiry or rollover
of a contract presents a manipulation risk on its own, and the importance of relatedness is arguably at a peak during
this period.
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instance, more than €170 billion worth of the Mar 2020 10-year German Bund futures were traded,

and over 4 million limit order book updates were generated.

[INSERT TABLE 2 AROUND HERE.]

3.2 Independent variables (the source product)
3.2.1 Imbalance score

The first part of a cross-product manipulation strategy involves altering an order book balance in

one product (the source product) to create an artificial perception of supply and demand. This

indicates a change in buying or selling pressure and thus foreshadows an imminent price movement.

Book balance is the comparison of total volume on each book side. The imbalance ratio, xn, is a

common quantification of this imbalance.

xn =
Σn

i=1bi − Σn
j=1aj

Σn
i=1bi +Σn

j=1aj
(1)

where n is the number of price levels included in the calculation, and bi and aj are the bid and

ask volumes at the ith and jth price levels, respectively.

xn is bounded [−1, 1] with most of its range occupied by low imbalance book states around

zero. Traders are more inclined to react to potentially market-moving signals, which are reflected

in strongly imbalanced book states, so we transform xn to stretch out extreme imbalance ratios as

follows.

I ′n = log

(
xn − (−1)

1− xn

)
(2)

The I ′n are distributed approximately normally, N(0, σI′
n
) with σI′

n
generally reducing as n

increases (see Figure 2). To allow the I ′n to be compared across different values of n, the I ′n were

scaled to unit dispersion, resulting in the imbalance score, In.

In =
I ′n
σI′

n

(3)
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The transformation from xn to I ′n is shown graphically in Figure 2, which shows a typical

distribution of xn for several selected values of n.

[INSERT FIGURE 2 AROUND HERE.]

The In are strongly collinear, so instead of including them directly in the model, we represent

each as the net change to the imbalance score when the nth price level is included.

dIn = In − In−1 (4)

We describe the dIn as delta imbalance values.

3.2.2 Bid-ask spread and volume proxy

The bid-ask spread and a volume proxy are included in the model because we suspect a wide spread

or an imbalance score based on a relatively small total volume may affect the transmissibility of an

imbalance signal to the receiving products.

The spread variable, s, is the centred difference between the best ask and bid prices, pa pb,

respectively. s is not scaled to retain its cent scale.

s = (pa − pb)− µs (5)

Where µs is the mean spread observed over all book updates for a product.

Indicative volume, v, is the scaled and centred base 2 log of the total volume at or within five

price steps of the best prices.

v′ = log2[Σ
5
n=1(bn + an)] (6)

v =
v′ − µv

σv
(7)

Where µv and σv are respectively the mean and standard deviation of v′.
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3.2.3 Sampling

The independent variables are calculated from source product book states at timestamps sampled

according to the following process.

1. Determine the start and end timestamps of windows of unchanging best bid and ask prices.

2. Attribute an extremum sampling weight, we,i, to each book state, i. we,i = Σ10
j=1|I∗i,j |, where

I∗i,n = Ii,n if Ii,n establishes a new positive maximum or negative minimum imbalance score for

imbalance depth n within its window of unchanging spread, and I∗i,n = 0 otherwise.

3. Attribute a density sampling weight, wd,i, to each book state, i. wd,i is the reciprocal of

local point density in a space defined by the PCA transformation of the product’s spread, indicative

volume, and imbalance variables. PCA components sufficient to include 80% of the overall variation

are included.

4. Randomly sample from the entire data set where the sampling probability for a given book

state, i, is proportional to the product of its component sampling weights.

wi = we,i × wd,i (8)

The we biases the sampling towards the strongly imbalanced book states that are the focus of

traders monitoring markets (see, in particular, Lo and Sapp (2010); Stenfors and Susai (2019)).

The wd sampling weight ensures that the model includes even rare combinations of spread, volume,

and imbalances. The exclusion of book states that do not set new extreme imbalance scores tends

to select events at the leading edge of a period of increased imbalance, and thus are likely to precede

price responses to the imbalance. Figure 3 illustrates this leading-edge selection for selected In and

the resulting we.

[INSERT FIGURE 3 AROUND HERE.]

As an illustration, the top four panels in Figure 3 show a selection of imbalance scores within

a single period of unchanging spread in the 10-year Italian FBTP Jun 20 contract. The bottom

panel shows the we summed across the selected imbalance scores at each order book state.

Reading the upper panels from left to right shows that the level 1 imbalance score drops initially,

accumulating five new cumulative minimum values (green points) below zero (red line) before 13:39

on 2 March 2020. The other levels do not move as dramatically, and obtain only two such points in
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that time. Differences in the volumes considered by each imbalance score result in different book

states being selected for each imbalance score. For example, although imbalance scores for n = 1,

3, and 7 all trend negative in the second half of the window, they take different paths and gain

different numbers of sample points along the way. The n = 9 imbalance score echos the upward

score drift between 13:39:05 and 13:39:10, but unlike the other levels, it moves above zero, marking

several new cumulative maximum scores in doing so.

The lowest panel shows we, the absolute value of the selected imbalance scores at each order

book state (including only the plotted imbalance levels for clarity). If multiple imbalance scores

set a new maximum or minimum value on the same book state, a significant change was made

close to the best price, and the resulting we can be large. If only a few imbalance scores reach new

extrema, then the sum will include fewer terms and be lower, reflecting the less pervasive nature of

the imbalance change. If many imbalance scores are included in a sum, but some are in opposing

directions, then their sum will be reduced, reflecting the confused nature of the book imbalance.

The book state sampling method is applied independently within different time windows defined

by stretches of unchanging best prices in the source instrument. These windows provide natural

experimental units where the changing book depth is the main dynamic, allowing some isolation

of the book imbalance signal from competing factors. Furthermore, as we require that a sampled

book state and its price response must occur in sequence within the same window, the complication

that the price response may be due to a shift in the source instrument’s spread is avoided.

This design also naturally limits the imbalance-to-price-response delay to intervals short enough

for the imbalance signal to remain a valid causal factor in the response. The longer the delay,

the more the source instrument’s depth changes and the more diluted the effect of the sampled

imbalance becomes until it finally becomes irrelevant. This design takes the view that if the book

depth has changed sufficiently to affect the best prices, then none of the imbalance signals observed

prior to the change in best price remain valid causal factors for future price changes in the response

security. This conservative restriction typically censors between 71% and 92% of price response

observations, but it also biases observations towards imbalance-response pairs where the imbalance

signal is most likely to be an important causal factor of the response. Figure 4 shows the distribution

of the delay between sampled imbalance and observed price response or censoring.

[INSERT FIGURE 4 AROUND HERE.]
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3.3 Dependent variable (the response product)

The purpose of a cross-product manipulation strategy is ultimately to trigger a behavioural reaction

by other traders in the response product that is advantageous to the perpetrator. The beneficial or

profitable response can be proxied in different ways, e.g. through transactions (Lee et al., 2013),

order cancellations (Stenfors and Susai, 2021) or price and volume shifts at the top of the book

(Stenfors et al., 2023).

Our model uses changes in the "true price", pt, as the response proxy, which is widely used in

trade surveillance technology. pt is defined as:

pt = l for pb ≤ l ≤ pa (9)

= pb for l < pb (10)

= pa for l > pa (11)

where pb and pa are the best bid and ask prices respectively, and l is the last traded price.

The outcome variable in our model is the direction of the price change in the response product

following the book state sampled in the source product. If there is no price change before the end

of the window of stable spread in the source product, then no response is recorded and the sample

is dropped from the data set (see Section 3.2.3).

4 The Model

The model seeks to quantify an associative link between a sampled book state and a price response

following it to assess whether two products could be systematically susceptible to cross-product

manipulation. Although time series, correlation-based approaches and TVP-VAR models are use-

ful in studying the connectedness and transmission mechanism of shocks across financial markets

(see, for instance, Diebold and Yılmaz (2009); Balcilar et al. (2021); Chatziantoniou et al. (2021);

Stenfors et al. (2022b,a); Chatziantoniou et al. (2020); Gabauer et al. (2023); Gabauer and Stenfors

(2024)), they face significant challenges in this application. The multitude of possible unobserved

causes for a price response, and the irregular spacing between book imbalance and price response

eliminates or complicates the interpretability of many common time series approaches. Analysing

correlations between price responses and each In within a product pair produces insights similar to
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those obtained from our model but does not allow for the inclusion of nuisance variables, nor does

it as clearly isolate the marginal contribution of the nth depth level.

We employ logistic regression on the delta imbalances, dIn, and nuisance variables of spread and

indicative volume, s and v, respectively. The binary outcome variable, p, is 1 if the observed price

change is positive, and 0 otherwise. A separate model is fit for each product pair (cross-product),

including self-pairs (single-product), and in each direction (i.e. the same product being source in

one model and response in another) for a total of 64 separate models of the form below.

logit(p) = β0 + βss+ βvv + βIdI + ϵ (12)

where the β are the model coefficients, and ϵ ∼ N(0, σ2) is the residual error.

We define the transmissibility of the imbalance signal, ηi, as the difference between model m’s

mean absolute error (MAE), ēm, from that of a null model that predicts random probabilities

uniformly in the range [0, 1], thus having null mean absolute error of 0.5.

ηm = 0.5− ēm (13)

We expect that volume deeper in the book is less relevant to depth-driven trading decisions and,

thus, less relevant to imbalance signal transmission. However, it is not obvious how quickly the

relevance of the depth fades, nor how many levels should be included in each model. This number

is likely to vary with volatility, trading rate, and spread amongst other aspects of market condition,

resulting in different depth importance profiles for each model.

The construction of the dIn as dIn = In − In−1 allows separation of each depth level’s influence

and a principled step-wise process for variable selection in each model. The variable selection

process starts with the base model of logit(p) = β0 + βss+ βvv + ϵ then sequentially adds the dIn

from n = 1 to n = 10, recording the AIC value at each addition. The simplest model within 2 of

the minimum AIC value is selected.
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5 Empirical results

5.1 Transmissibility

The primary focus of the model is to quantify the association between a book imbalance in one

product and a subsequent price change in another – this mechanism being necessary for a typical

cross-product manipulation scenario.

Figure 5 shows the transmissibility of this imbalance signal between all pairs in the data set.

[INSERT FIGURE 5 AROUND HERE.]

Each panel collects one source product and one response product, and shows the four trans-

missibility values amongst them (Mar-Mar, Mar-Jun, Jun-Mar, Jun-Jun). The diagonal panels are

shaded to indicate that the same product is source and response. For example, the top-left panel

shows the transmissibility amongst the 10-year Italian FBTP contracts. Within each panel, the

left-hand pair of points correspond to the March contract acting as the imbalance source (Mar-

Mar, Mar-Jun), and the right-hand pair corresponds to the June contract as the source (Jun-Mar,

Jun-Jun).

Non-zero transmissibility is observed both within product groups (shaded panels) and across

product groups. Thus, the empirical results are in accordance with the expectation that major

European government bond futures contracts could be susceptible to cross-product manipulation

tactics because they are closely related. Notably, imbalance in the 10-year German FGBL Mar 20

contract is significantly associated with price movements in both contract maturities for the 5-year

German FGBM and the 10-year French FOAT. This indicates that manipulation across products of

different issuers (Germany and France) as well as different maturities (5-year and 10-year) appear

feasible. Importantly, the 10-year German Bund future (FGBL) is one of the most liquid and

widely monitored fixed-income contracts worldwide – solidifying its role as a natural hedge but,

unfortunately, also a likely source product in cross-product manipulation strategies.

The 10-year Italian FBTP product group is relatively isolated from the German 10-year FGBL

and 5-year FGBM, and the French 10-year FOAT product groups. None of the latter three show

strong transmission to Italian contracts (left-most column of panels), and the Italian contracts do

not have much transmission to the other three (top row of panels). However, amongst themselves,

the FGBL, FGBM, and FOAT product groups appear to share significant interaction (lower-right
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group of nine panels). On the date from which this data was sourced (2 March 2020), the country

credit ratings for Germany were AAA (stable) by S&P and Aaa (stable) by Moody’s. The corre-

sponding ratings for France were AA (stable) and Aa2 (stable), and for Italy BBB (negative) and

Baa3 (stable).

These findings echo the Morgan Stanley cross-product manipulation case reported by AMF

(2019) and summarised in Section 2.2. In the morning of the pump-and-dump scheme, Morgan

Stanley aggressively bought 10-year French FOAT, German 10-year FGBL and 30-year FGBX

futures and subsequently sold 17 different OATs with remaining maturities of 4 to 29 years and

8 different OLOs with remaining maturities of 7 to 29 years. In principle, the purpose was to

unwind unfavourable long positions in French and Belgian cash bonds at a time when the Eurozone

sovereign bond market was highly volatile due to fear of Greece leaving the currency area. According

to investigators and independent experts, a strong correlation was reported among FOAT, FGBL

and FGBX and they, combined, influenced the price of OATs. Further, the correlation coefficient

between the French OAT cash bonds and the Belgian OLO cash bonds had been as high as 0.97

during the previous three years. Morgan Stanley also confirmed that Belgian and French bonds

were treated as interchangeable due to the strong positive correlation. No distinction was made

between FOAT and OAT in terms of exposure to sovereign risk. Indeed, our model shows that

manipulation across products of different issuers and underlying credit risk is feasible as long as

the perceived creditworthiness is relatively similar. Italian bond futures are clearly seen as outliers,

which reduces their susceptibility to cross-product manipulation in combination with German and

French government bond futures. The discovery that manipulation across maturities may be feasible

is also in line with the regulatory report on the Morgan Stanley case. Medium to long-term bonds

and bond futures tend to be closely correlated – thereby increasing the susceptibility to cross-

product manipulation.

The transmissibility from Mar to Jun contracts (left-hand red point) exceeds in nearly all in-

stances the transmissibility in the opposite direction (right-hand blue point). This suggests that

manipulation is feasible not only across contracts with different expiry dates but also that relative

liquidity influences transmissibility. The transmissibility is stronger from a more liquid to less liq-

uid contract than vice versa. This is logical, given that the sampled date of 2 March 2020 is only

four days away from the expiration date of the March contracts. As can be seen in Table 2, the

traded volumes in the Mar 20 contracts exceed those in the Jun 20 contracts by around 7 times
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for the German and Italian bond futures and 14 times for the French bond futures. Just before

the expiry, many traders and investors would be looking to roll their positions from the soon-to-be-

expired contract to the following one. This known and strongly directional association between the

two contracts should result in any hint of impending price movement in the March contract being

quickly reflected in the June contract, but not the other way around. This is precisely what we see

in the data.

The phenomenon should not be confused with manipulative tactics such as "banging the close" or

attempts to "corner" or "squeeze" the market before a fixing or contract settlement (Pirrong, 2001;

Kumar and Seppi, 1992). Instead, it relates to the convention of basing pricing and valuation off a

product acting as the cheapest available hedge – which depends on a function of both relatedness

and relative liquidity. As a result, (more) traders are inclined to react (more strongly) to order book

imbalances for a product that is treated as a benchmark. Thus, our findings echo those documented

by Stenfors et al. (2023) in FX spot markets, showing that cross-market spoofing is more likely to

occur from EUR/USD or USD/JPY to EUR/JPY than the other way around. Whilst the three

currency pairs are mathematically related and connected through the forces of triangular arbitrage,

the EUR/JPY market is considerably less liquid and often priced as a derivation from the other

two currency pairs.

The importance of relative liquidity for surveillance and detection is also consistent with the evi-

dence published by the DOJ surrounding the cross-product spoofing strategies adopted by NatWest

(DOJ, 2021). As explicitly stated by the DOJ and illustrated with a real-life example in Section

2.2, spoof orders were placed in the futures market (e.g. the highly liquid CME Ultrabond future)

and genuine resting orders in the cash market (relatively less liquid US Treasury bonds).

A similar logic can be applied to the Morgan Stanley case. The FOAT, FGBL and FGBX futures

contracts are significantly more liquid than any of the OATs or OLOs, whose prices were intended

to be influenced by the aggressive buying of the related futures contracts serving as benchmarks.

Our findings are also applicable to the Credit Swiss case reported by the FCA involving the

ramping of a particular UK government bond (FCA, 2014). As noted earlier, the bond was highly

illiquid compared to related bonds of similar maturity. For instance, the 5-month average daily

trading value of the bond amounted to £9 million, whereas the corresponding figure for the six

most closely related UK government bonds in terms of maturity ranged from £74.5 to £478.8

million. This made it feasible to manipulate the price of the bond whilst maintaining a limited net
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exposure to the yield curve segment in question – as illustrated in Figure 1.

5.2 Depth relevance

The secondary focus of the model is to explore how far in depth volume matters in regards to the

transmission of an imbalance signal to another product. Orders very far from the best prices are not

relevant to depth-driven, short-term trading decisions. However, it is not obvious how far is too far

from the best prices to matter. Therefore, we examine the relevance of the marginal contribution

to book imbalance made by the inclusion of volumes at the nth price level when the imbalance

calculated from levels 1 to (n-1) is known.

Figure 6 shows the coefficients of every model, along with each model’s η in the boxed numbers.

Each panel displays a single model, i.e. one source product (one per row) and one response product

(one per column). The diagonal panels are shaded to indicate that the same product is both source

and response. For example, the top-left panel shows the 10-year Italian FBTP June-June model

(single-product) and the top-right panel shows the 10-year Italian FBTP Jun to the 10-year French

FOAT March model (cross-product). The black horizontal bars within each panel indicate the 95%

confidence intervals of the parameter coefficient estimates. The intercept parameter, β0, is at the

top, followed by the coefficients for spread, βs, volume proxy, βv, and each of the dIn, βI from level

1 to 10 progressing down the chart. Not all models include estimates for all dIn due to the model

selection process removing them from the model.

[INSERT FIGURE 6 AROUND HERE.]

A coefficient estimate bar crossing the vertical dashed line marking zero indicates lack of evidence

to support the hypothesis that the coefficient value is not zero. Where an estimate bar lies to the

right of the zero line, an increase in its parameter’s value will increase the model’s estimate of

the probability of a positive price response. If the the bar lies to the left, then an increase in the

parameter reduces the model’s probability estimate. The magnitude of the change in probability

estimate depends on both the value of the coefficient and the values of the other parameters, making

direct interpretation of the coefficients difficult. However, as a simple example consider the result

for the 10-year French FOAT March vs. the 5-year German FGBM June (bottom row, 5th panel).

When all parameters for the 10-year French FOAT March are held at their median values, changing

the dI3 parameter from its lower to upper quartile values will change the predicted probability of
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a positive price change in the 5-year German FGBM June from 44% to 77%, while doing the same

for dI1 only changes the predicted probability from 57% to 68%. In practical terms, this means

that the German bond futures market could be highly sensitive to spoof order submitted at level

3 of the French bond futures market. This finding is concerning, as it suggests that cross-product

manipulation might be feasible in fixed income markets with different issuers (and credit rating),

different maturities and different contract expiry dates.

The significant variation in coefficient estimates between models indicates that factors specific

to individual source-response security pairings play a significant role. These external factors relate

to the degree fo relatedness between a pair, and so are summarised by the ηm of each pair. Figure

7 shows how the coefficients for each independent variable change with η. A LOESS approximation

and its 95% confidence interval (shaded) are overlaid on each variable.

[INSERT FIGURE 7 AROUND HERE.]

Figure 7 shows that despite the clear variation between models there are common themes for

models with non-zero transmission. In general, the spread and volume proxy coefficients remain

close to zero regardless of η, indicating that – at least for this collection of liquid and actively

traded instruments – their values are irrelevant for assessing transmissibility. By contrast, (with

the possible exception of n = 10) the coefficients for the dIn variables show a positive association

with η. This indicates that the more transmission a product pairing has, the greater the importance

of the imbalance at all depths, albeit with each depth level having a different importance.

To illustrate the relative importance of each dIn, Figure 8 plots the precision-weighted mean

coefficient values for each independent variable taken from models having η ≥ 0.05. Models with

η < 0.05 are excluded to remove the influence of product pairings that show no transmission.

[INSERT FIGURE 8 AROUND HERE.]

As expected from Figure 7, the mean coefficients in Figure 8 for spread and the volume proxy are

very small, indicating relatively small effect on transmission probability. Additionally, the gradual

reduction in the dIn coefficient values beyond n = 3 is in accordance with the general understanding

that imbalances due to volume deep in a book are less indicative of an imminent price movement,

and hence of less relevance to transmissibility than imbalances observed closer to the best prices.

The values for the dI1 and dI2 coefficients show a marked difference between single-product

imbalance transmission (blue points) and cross-product transmission (red points). This provides
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an insight into the differing drivers of single- and cross-product imbalance transmission. In both

cases, the top-of-book imbalance is less important than imbalance contributed by volumes at levels

2 to 4. However, top-of-book imbalances (dI1) appear to have no effect at all on cross-product

transmission, while their effect is significant for single-product transmission. The single- and cross-

product coefficients for dI2 are closer together than those for dI1, but remain notably distinct. After

dI3 the single- and cross-product coefficients are broadly the same.

The results do not imply that European fixed income futures are immune to cross-product

manipulation tactics at the top of the book or that the model is unable to capture a crucial feature

in trading psychology. Rather, it confirms that this is a liquid and efficient market where a range

of factors may determine prices. Volume changes at the top of the book in a related product may

or may not count as immediately relevant. What is immediately relevant, however, are volume

changes at the top of the book in the same product – as well as substantial shifts in supply and

demand at a few levels within the order book of the same and related products. From a practical

perspective, this highlights why cross-product manipulation can be notoriously difficult to detect.

Monitoring and surveillance would not only need to involve a huge list of product combinations.

The process also requires order book data that is not necessarily required to test for susceptibility

of single-product manipulation.

5.3 Fraudulent profits associated with cross-product manipulation

Any attempt to manipulate financial markets is considered fraudulent. In practice, however, a

significant amount of discretion is applied to monitoring and surveillance. Resources within com-

pliance and regulation are limited and, inevitably, judgements on how to reduce the number of false

positives have to be made. Particular attention is, therefore, paid to abnormal profits, large orders

or trades and anomalous price movements.

In some regulatory cases, actual or potential profits and losses stemming from market manipu-

lation are meticulously calculated and made available in reports in the public domain. For instance,

in the NatWest case discussed earlier, the DOJ estimated that the illegal profits from their fraudu-

lent trading schemes amounted to $2,841,368. Further, the actions were estimated to have resulted

in losses of around $6,165,913 to US Treasury futures contracts market participants and $596,054

in losses to US Treasury securities market participants (DOJ, 2021).

In the Morgan Stanley case, by contrast, the purpose of the market manipulation was to reduce
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losses. Concerning the Belgian OLOs, AMF estimated that savings of €1,848,500 were made due

to the price moves from 09:29 a.m. to 09:44 a.m. on 16 June 2015. The market moved partly due

to the aggressive buying of 1,890 related French FOAT futures contracts, which, according to the

regulator, contributed 60% to the FOAT price increase from 144.84 to 145.41 (AMF, 2019).

The Mark Stevenson (Credit Suisse) case is peculiar in the sense that the manipulation had a

significant impact on the market but did not end up generating a profit for the trader or the bank.

This is because, for the first time in history, the Bank of England decided to reject all offers in

the bond auction “following significant changes in its yield in the run-up to the auction.” Stevenson

controlled 92% of the market that day, ramping the bond by up around 10 basis points compared

to related UK government bonds of comparable maturities. As stated by the FCA, Credit Suisse

“stood to make significant sums of money had the offer of the Bond been accepted by the BOE and

Mr Stevenson would have indirectly benefited from this.” Nonetheless, the actions were deemed to

risk undermining market confidence and potentially also taxpayers as the bond auction ultimately

had been designed to stimulate the UK economy during QE (FCA, 2014).

The results from our model can easily be translated into profit and loss estimations derived from

hypothetical cross-product manipulation scenarios. Suppose, for instance, that a trader submits a

very large spoof order on the bid side at depth level 3 of the source product. For simplicity, yet

keeping it realistic, let us define "large" as half of the maximum summed bid and ask dI3 volumes.

How will this change the predicted probability of a positive price change in the response product,

and what is the impact in terms of profit and loss for the manipulator? Table 3 provides the

corresponding number of contracts in the source product (row 1), the change in probability (row 2),

and the extra profit (or loss) in € per contract in the response product (row 3) – for each product

combination.2

[INSERT TABLE 3 AROUND HERE.]

Consider the result for the 10-year French FOAT March vs. the 5-year German FGBM Jun

20 futures (bottom row, 5th panel). A submission of 247 10-year French FOAT Mar 20 futures

contracts on the bid side of level 3 (equivalent to half of the maximum summed bid and ask

volumes) increases the probability of a positive price change in the 5-year German FGBM Jun 20

futures by 17.6%. This equates to an extra profit of €1.89 per FGBM contract, should a resting
2Detailed calculations underpinning the numbers in Table 3 can be provided on request.
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order have been left on the best ask side of the order book.

The seemingly small numbers have to be put into the context of estimating immediate reactions

in extremely liquid markets (the average bid-ask spread in the 5-year German FGBM Jun 20 market

was just 1.08 ticks). However, the results align with the evidence from regulatory reports showing

that spoofing is an activity that tends to be repeated over and over again to generate substantial

profits. As CFTC stated regarding JP Morgan, the bank’s activity had “involved hundreds of

thousands of spoof orders” (CFTC, 2020).

5.4 A robustness check

The model we have developed in this paper provides a snapshot of whether a product combination

is susceptible to cross-product manipulation. More than 10 million book updates have been used to

generate the empirical results for 2 March 2020. Obviously, markets evolve over time and significant

shifts may increase or decrease the risk of cross-market abuse. However, an exploration into the

quantification of (changing) relatedness and its impact on the risk of manipulation is beyond the

scope of our paper.

Nonetheless, as a robustness check, we generate the results for a trading day that, at the outset,

contains some differences, yet is close enough to allow for a comparison. Hence, Table 4 provides

an overview of the trading activity five days earlier, i.e. on 26 February 2020.

[INSERT TABLE 4 AROUND HERE.]

As can be seen, the number of book updates and traded turnover is reasonably similar for the

FBTP, FGBL, FGBM and FOAT Mar 20 contracts. Compared to the activity on 2 March 2020,

most of the variations are less than 20%. However, the Jun 20 contracts are considerably less

traded, because most traders have not yet started rolling over their positions ahead of the expiry

date. Notice that the ratio of traded volume between Mar 20 and Jun 20 is extremely high – ranging

from 23 for the 10-year Italian FBTP to 90 for the 10-year French FOAT.

Nonetheless, Figure 9 shows the same general pattern of censoring, indicating no obvious struc-

tural differences (other than a much reduced Jun 20 observation count) between the two days.

[INSERT FIGURE 9 AROUND HERE.]

Figure 10 shows the transmissibility of the imbalance signal between all pairs.
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[INSERT FIGURE 10 AROUND HERE.]

Overall, the pattern for 26 February 2020 is the same as in Figure 5 using the 2 March 2020

dataset - with an important difference. There is considerably more uncertainty in the estimates

involving the Jun 20 contracts. The transmission to the Jun 20 contact is stronger than to the Mar

20 contract regardless of the source product (i.e. the red dot is higher than the blue dot in each

pair). Furthermore, the transmission from the Mar 20 contract is, on average, greater than that

from the Jun 20 contract (i.e. the dots in the left pair are on average higher than those in the right

pair, within each cell).

The extra uncertainty becomes even more evident when studying the relevance of depth volume

on the transmission of an imbalance signal from the source product to the response product. Observe

the wideness of the black bars in Figure 11 for cross-product combinations involving the Jun 20

contract. The lack of volume at deeper levels of the order book for the Jun 20 is also noticeable.

[INSERT FIGURE 11 AROUND HERE.]

Having said that, the general coefficient pattern observed in the 2 March 2020 data is echoed in

the results for 26 February 2020 (see Figure 12 and Figure 13 below).

[INSERT FIGURE 12 AROUND HERE.]

[INSERT FIGURE 13 AROUND HERE.]

Importantly, the results from the robustness check do not suggest that cross-product manipu-

lation is less likely to involve contracts with different expiry dates. Rather, they seem to indicate

that derivatives markets could become more susceptible to manipulative attempts as fixing and

settlement dates are approaching.

6 Conclusions

During the last decades, global financial markets have evolved dramatically. Financial innovation

and technological development have spurred the creation of new financial instruments, new trading

venues and the adoption of more sophisticated risk management practices. Markets have also

become more interconnected – more lately as a result of electronic trading platforms and algorithmic

trading and execution becoming established in a wider range of products and markets.
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Hedging and arbitrage opportunities – in many cases accompanied by more stiff competition

— has undoubtedly helped to lower transaction costs and enhance market efficiency and the price

discovery process. Unfortunately, however, the process also appears to have generated new risks

to financial stability (e.g. flash crashes which are challenging to stop) and sophisticated strategies

to commit financial market fraud (e.g. cross-product manipulation which is notoriously difficult to

detect).

In this paper, we have taken initial steps to address the latter issue by designing and testing a

simple model that can be used by a wide range of stakeholders (e.g. regulators, exchanges, financial

institutions and surveillance technology providers) to scan for the risk of manipulation between two

markets or products. The model not only generates a snapshot of whether a product combination

could be susceptible to cross-product manipulation. It also quantifies the importance of changes

at different levels of the order book in the source product for a subsequent price reaction in the

response product.

Using a complete EUREX ultra-high-frequency data set, we test the model empirically on 8

single-product and 56 cross-product combinations of European government bond futures contracts.

Three empirical findings are notable. First, consistent with the literature, cross-product manipu-

lation is feasible across products of different maturities (5-year and 10-year) and different issuers

(Germany and France). Second, manipulation across products of different issuers and underlying

credit risk seems feasible as long as the perceived creditworthiness is relatively similar (Germany

and France), but not when involving an outlier (Italy). Third, manipulation across contracts with

different expiry dates is feasible and will likely involve a liquid source product and less liquid re-

sponse product (i.e. March 2020 and June 2020, rather than vice versa). Studying the order book

depth of the source product, we find that levels 2 to 4 are most relevant for both single- and cross-

product combinations. Deeper into the order book, the impact of volume imbalances gradually

fades. Interestingly, level 1 imbalances only have an impact on single-product transmission.

Recent discoveries and cases by regulators worldwide indicate that cross-product manipulation

may involve various order types, strategies and markets. Unfortunately, our findings suggest these

only represent the tip of an iceberg. Related products in markets where the level of relatedness and

connectedness is high, such as fixed income, interest rate derivatives and commodities, are likely

to be particularly vulnerable. Our simple model is not capable of discovering actual cross-product

manipulation. Still, it can provide a snapshot of where regulators, exchanges, financial institutions
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and surveillance technology providers should start to look.
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Table 1: Government bond futures contracts overview

Contract Remaining term in years Issuer Contract size

Long-Term Euro-BTP Futures (FBTP) 8.50 to 11.00 Republic of Italy €100,000
Euro-Bund Futures (FGBL) 8.50 to 10.50 Federal Republic of Germany €100,000
Euro-Bobl Futures (FGBM) 4.50 to 5.50 Federal Republic of Germany €100,000
Euro-OAT Futures (FOAT) 8.50 to 10.50 Republic of France €100,000

Source: EUREX (2023)
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Table 2: Market overview (2 March 2020)

Contract Book updates Trades Traded volume Mean (median) trade size Value (mio EUR)

FBTP Mar 20 691,200 52,948 190,687 3.6 (2) 27,725
FBTP Jun 20 65,363 8,748 25,567 2.9 (1) 3,729

FGBL Mar 20 4,364,532 120,191 965,050 8 (3) 171,599
FGBL Jun 20 1,106,744 23,215 143,831 6.2 (2) 25,180

FGBM Mar 20 1,144,754 23,441 542,036 23.1 (6) 73,634
FGBM Jun 20 304,945 5,702 74,495 13.1 (4) 10,146

FOAT Mar 20 2,820,576 41,479 249,121 6 (3) 42,082
FOAT Jun 20 410,772 7,765 17,376 2.2 (1) 2,981

Source: EUREX and authors’ calculations.
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Figure 1: Squeezing/ramping of a Gilt (UK government bond) and related bonds

Source: FCA (2014)
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Figure 2: Transformation to standardised, unbound imbalance score (FBTP Mar 20)

Source: EUREX and authors’ calculations

33



Figure 3: Book state sample weighting

Source: EUREX and authors’ calculations
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Figure 4: Delay between sampled book state and price response or censoring

Source: EUREX and authors’ calculations
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Figure 5: Transmissibility of an imbalance signal

Source: EUREX and authors’ calculations
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Figure 6: Transmission model coefficients

Source: EUREX and authors’ calculations
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Figure 7: Coefficients by transmissibility

Source: EUREX and authors’ calculations
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Figure 8: Averaged coefficients by transmissibility

Source: EUREX and authors’ calculations
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Table 3: Profit and loss (example)

Source FBTP J2 FBTP M2 FGBL J2 FGBL M2 FGBM J2 FGBM M2 FOAT J2 FOAT M2

101 102 102 102 101 101 101 101
FBTP J2 0.204 0 0 0 0.193 0.128 0.069 -0.036

8.35 0 0 0 2.08 1.31 1 -0.39

142 142 142 142 142 142 142 142
FBTP M2 0.226 0.087 -0.025 0.025 -0.056 0.005 0.045 0.002

9.25 1.09 -0.29 0.26 -0.6 0.05 0.65 0.02

574 574 574 574 574 574 574 574
FGBL J2 0.017 0.019 0.206 0.078 0.074 0.191 0.17 0.156

0.72 0.24 2.39 0.82 0.79 1.95 2.47 1.67

684 684 684 684 684 684 684 684
FGBL M2 -0.056 0.016 0.117 0.097 0.048 0.014 0.096 0.129

-2.3 0.2 1.36 1.02 0.52 0.14 1.4 1.38

1277 1277 1277 1277 1277 1277 1277 1277
FGBM J2 -0.018 -0.005 0.006 -0.01 0.087 -0.053 0.114 0.055

-0.73 -0.07 0.07 -0.11 0.93 -0.54 1.66 0.59

3536 3536 3536 3536 3536 3536 3536 3536
FGBM M2 -0.021 -0.025 0.098 0.054 0.238 0.182 0.07 0.078

-0.85 -0.31 1.14 0.56 2.56 1.86 1.02 0.84

66 66 66 66 66 66 66 66
FOAT J2 0.013 -0.009 0.154 0.095 0.178 0.098 0.173 0.198

0.52 -0.11 1.78 1 1.92 1 2.52 2.12

247 247 247 247 247 247 247 247
FOAT M2 0.001 0.005 0.097 0.07 0.176 0.075 0.089 0.138

0.02 0.06 1.12 0.74 1.89 0.76 1.29 1.48

Source: EUREX and authors’ calculations.
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Table 4: Market overview (26 February 2020)

Contract Book updates Trades Traded volume Mean (median) trade size Value (mio EUR)

FBTP Mar 20 807,759 42,745 197,110 4.6 (2) 28,880
FBTP Jun 20 60,584 1,813 8,559 4.7 (2) 1,260

FGBL Mar 20 4,660,323 117,358 1,110,264 9.5 (3) 195,819
FGBL Jun 20 617,255 6,868 25,676 3.7 (1) 4,458

FGBM Mar 20 1,348,727 18,781 624,312 33.2 (7) 84,512
FGBM Jun 20 160.556 1,090 20,081 18.4 (4) 2,724

FOAT Mar 20 2,883,040 36,276 263,093 7.3 (3) 44,229
FOAT Jun 20 70,718 637 2,901 4.6 (2) 495

Source: EUREX and authors’ calculations.
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Figure 9: Delay between sampled book state and price response or censoring (26 February 2020)

Source: EUREX and authors’ calculations
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Figure 10: Transmissibility of an imbalance signal (26 February 2020)
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Figure 11: Transmission model coefficients (26 February 2020)

Source: EUREX and authors’ calculations
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Figure 12: Coefficients by transmissibility (26 February 2020)
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Figure 13: Averaged coefficients by transmissibility (26 February 2020)
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