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Abstract

We investigate the potential for automated market makers (AMMs) to be eco-

nomically viable in and improve traditional financial markets. AMMs are a new type

of trading institution that have emerged in the world of crypto-assets and process a

significant portion of global crypto trading volume. The current trend of tokenizing

assets, the legitimization of crypto-token issuance via the EU’s MiCA regulation, and

the push by the S.E.C. to change the trading of retail orders presents an opportunity to

consider AMMs for traditional markets. We develop a theoretical approach for AMM

liquidity provision in equities and then calibrate the model parameters, based on U.S.

equity trading data. Our analysis suggests that an optimally designed AMMs could save

U.S. investors billions in transaction costs each year. The source for these savings is

twofold: AMMs allow better risk sharing for liquidity providers and they use locked-up

capital that otherwise sits idly at brokerages. The savings arise across the board and

would particularly improve the liquidity and trading costs for small firms, allowing them

to attract more investors and capital.
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Automated market makers (AMMs) are a new type of trading institution that has

no parallel in traditional financial markets and already processes 15-20% of worldwide

trading volume in crypto-assets despite the learning curve required in using them.

Although AMMs were designed for and run on blockchains like Ethereum, they could

also be built on a traditional financial infrastructure. We ask a hypothetical question:

can this type of system be economically viable and improve traditional markets?

We first characterize the liquidity provision decision for an AMM, building on Lehar

and Parlour (2021). One of our contributions is to describe liquidity as a function of

a firm’s equity. We then derive the AMM parameters that maximize trader welfare

and calibrate the model using U.S. equity trading data. Our analysis suggests that an

optimally designed AMMs would save U.S. investors up to 30% of annual transactions

costs and lead to a substantial welfare improvement.

AMMs are a genuinely novel market institution that have been developed in the

wake of the proliferation of public blockchains. They allow continuous trading based

on passive, pooled liquidity provision and shared adverse selection risk. By design,

these systems are suitable for a broad swath of market participants to provide liquidity

and require no specialized skills or equipment, allowing asset users to re-use the capital

that is otherwise sitting idly in a brokerage account.

One reason for considering a new market mechanism like an AMM is that tradi-

tional public markets work well for large firms but not as well for smaller ones. Large

firms have significant analyst followings, liquid markets, and low trading costs. Small

firms often face the same regulatory and compliance costs as large firms, but have

significantly worse liquidity. For instance, in our data of U.S. publicly listed firms, the
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smallest 10% firms have 59 times higher trading costs than the largest firms in 2019,

making it difficult for them to attract investors and raise capital. Small firms do not

even at all trade on 9% of trading days.

The premise of all liquidity provision is that gains from balanced order flow outweigh

losses from unbalanced flow. In a traditional market, intermediaries must constantly

monitor the markets to make sure that they are not on the wrong side of the market,

which requires massive investments in trading technology. Arguably, AMMs are based

on a mindset different from that typically associated with liquidity provision. An AMM

represents a liquidity pool in which owners deposit their assets. It provides them with

the opportunity to use their existing capital to earn income from trading fees while

retaining exposure to their chosen asset. Risk and fee income are pro-rated among

depositors. Consequently, liquidity providers don’t have to participate in an arms

race for superior speed and market monitoring technology. There’s also no pressure for

liquidity providers to maintain a zero overnight position in an asset; in fact, they desire

exposure to the asset. This approach is especially beneficial for long-term investors,

including those who may lack sophisticated trading knowledge. Through better risk

sharing, AMMs would increase economic efficiency.

In this paper, we first derive closed-form formulae to express rewards for liquidity

provision and profits for liquidity takers based on trading variables in AMM systems.

For fixed trading volume and price change, a depositor’s return depends on two key

variables: the level of the fee, measured in basis points of the transaction value, and

the size of the liquidity pool. To ensure a useful comparison across assets, we measure

the size of an asset pool by a fraction of the asset’s market capitalization.
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Let α denote the fraction of an asset’s market capitalization that is deposited as

(passive) liquidity. More deposited liquidity α makes it cheaper to trade but each liq-

uidity provider gets less because the same fee gets distributed among more of them. Let

α denote the share of the deposited market capitalization such that liquidity providers

break even. Liquidity demander prefer to pay lower fees: let α denote the share for

which AMMs are cheaper than traditional markets for liquidity demanders. If α > α,

theoretically there exist an economically viable, welfare-improving AMM configuration.

Liquidity suppliers are intuitively willing to commit more capital when the trading

fee is higher (all else equal). The higher the liquidity, the lower is the price impact of

each trade, and, therefore, liquidity demanders benefit (somewhat) from higher fees.

Assuming that liquidity providers compete and submit liquidity so that they break

even, α = α, as we show, there is non-zero fee that maximizes liquidity demander

welfare (a similar result is in Hasbrouck, Rivera, and Saleh (2022)).

At the end of the day, however, it is an empirical question whether AMMs can be

economically viable and whether the alleged cost savings would materialize. We base

our investigation on all U.S.-listed common stocks in CRSP and TAQ from 2014-2022,

omitting the time period of the S.E.C. tick pilot because the design of the pilot might

distort our findings (likely favor AMMs). We then calibrate the key model parameters

—optimal fees and amount of liquidity provided— to observations, of volumes, trade

sizes, return characteristics, and transactions costs. For small firms (which have low

volume), the optimal fee is about 31 basis points, for large firms (which have higher

volume) it is only 0.8 basis points. For these fees, liquidity providers would break even

if they provide no more than 8% of shares outstanding for small firms and 3% for the
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largest firms as liquidity.

We then calculate the hypothetical contemporaneous benefit to liquidity demanders

on the current day and compare it to the observed costs of the traditional market. This

benefit can be positive or negative, for instance, depending on whether spreads are lower

or higher than on the previous day. Based on data from all U.S. publicly listed stocks,

there is a strict welfare gain for 82% of day and stock observations. Average benefits

across all firms are around 30% of annual trading costs, around $6.5 billion for 2019,

$12.5 billion in 2020, and $15.0 billion in 2021. The proportional benefit is largest for

small firms, the dollar amounts (due to higher volumes) are highest for large firms.

Although it may be (financially) straightforward to provide the shares for liquid-

ity, AMMs require an offsetting amount of cash as liquidity and this amount is not

small. We show, however, that in practice, only 2-5% of the theoretical amount of cash

(i.e., 3-32 basis points) need to be kept at the ready. Overall, our analysis indicates

that optimally designed AMMs could improve the trading environment for investors,

providing them with increased liquidity and substantially reduced trading costs.

The reader may wonder, however, about the source for the massive savings that we

project. These are not a sack of magic beans, but have a simple explanation: shared risk

and repurposing of idle capital. Currently, most shares sit idly at brokerages, except

for the small fraction of investors that lend shares to short sellers. Even this lending

activity is often bilateral, which makes it expensive and cumbersome to arrange. AMMs

allow investors to systematically put their capital to use and earn extra income, while

providing adequate risk sharing. There is, therefore, an entirely different interpretation

of our findings. Namely, our analysis gives an indication of hitherto unmeasured excess
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trading costs, based on the current market behavior of market participants and stock

characteristics. A last point to mention is that our analysis is conservative in the sense

that we are holding volumes fixed. Presumably, significantly lower costs of trading

should attract further trading activity.

In conclusion, if properly implemented, an AMM trading arrangement has the po-

tential to benefit market participants, particularly for smaller, less liquid securities.

Related Literature. There are several theoretical papers that study AMMs. Lehar

and Parlour (2021) and Aoyagi and Ito (2021) compare AMMs with limit order books

under asymmetric information. Lehar and Parlour (2021) study AMMs and limit order

books in isolation and show that for many parametric configurations, investors prefer

AMMs over the limit order market. Aoyagi and Ito (2021) model the co-existence of

a centralized exchange and an automated market maker, and they study the venue

choice of informed traders. Their main finding is that the informed traders react

non-monotonically to changes in the risky asset’s volatility, and that reaction causes

non-monotonic shifts in liquidity supply. In related work, Aoyagi (2022) models the

AMM liquidity provision decision under asymmetric information.

Liquidity providers in Aoyagi and Ito (2021) derive a positional benefit from trad-

ing with uninformed traders by withdrawing and reposting liquidity after each trade.

Differently, in Lehar and Parlour (2021) liquidity providers only withdraw liquidity in-

frequently. In their model, arbitrageurs approximately revert uninformed transactions,

which eliminates the positional gain for liquidity suppliers but generates fee income.

We follow Lehar and Parlour (2021) and assume the presence of a balanced order flow,

which is similar to an arbitrary uninformed flow that gets reversed by arbitrageurs.
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Capponi and Jia (2021) examine the impact of price volatility, caused by trading

on centralized exchanges, on the welfare of liquidity providers in automated swap ex-

changes for a broad set of functions (twice-continuously differentiable, and convex).

They identify the conditions for a breakdown of liquidity supply in the automated sys-

tem, and they show that a pricing curve with larger convexity reduces arbitrage rents,

but also decreases trading activities. Park (2023) studies properties of the standard

AMM pricing function compared to a limit order book-type pricing.

Barbon and Ranaldo (2022) compare the liquidity for crypto-asset trading in de-

centralized and centralized exchanges empirically and argue that DEX prices are less

efficient. Hasbrouck, Rivera, and Saleh (2022) study a model of DEX liquidity provi-

sion and the relationship of fees, liquidity, and volume. They show that an increase in

trading fees may attract additional liquidity which in turn attracts more volume.

Our theoretical description builds on Lehar and Parlour (2021) and Park (2023).

The description of some features of liquidity provision follows Barbon and Ranaldo

(2022).

I. Background on Automated Market Makers

An automated market maker establishes a liquidity pool to which tokens holders

can contribute pairs of tokens, usually in return for fee payments. To remove one type

of token from the pool, a liquidity demander has to deposit the other type of token.

The exchange rate of tokens is determined by a so-called “bonding curve.”

A liquidity pool contains deposits of a units of the asset A-tokens and c units of

cash. The pool’s liquidity is defined by a function L : R
+ × R

+ → R. The rule
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is reminiscent of a Cobb-Douglas production function, where the good produced is

liquidity and the inputs are the cash and asset. Combinations of a and c that describe

the same value L(a, c) are on an iso-illiquidity curve. The ratio c/a is the price for a

marginal unit of the asset.

There are two operations for liquidity pools. The first is the addition (or with-

drawal) of liquidity. The rule for this operation is that the marginal price does not

change. If a user adds/withdraws both cash and assets, ∆a,∆c with sign(∆a) =

sign(∆c) and

L(a, c) ≶ L(a +∆a, c+∆c)) for sign(∆a) = sign(∆c) ≷ 0.

If a user wants to add/withdraw ∆a units of liquidity they would need to add/withdraw

∆c such that ∆c/∆a = c/a.

The second operation are purchases of the asset from the pool (or sales of the

asset to the pool) where sign(∆a) = −sign(∆c). These operations keep the liquidity

constant. Specifically, to purchase quantity q of the asset A from the pool, a user

deposits (or pays) a quantity ∆c(q) of cash. After the trade, the pool contains a − q

of the asset and c + ∆c(q) cash. The liquidity invariance condition requires that the

exchange amount ∆c(q|a, c) for function L(a, c) is such that for any feasible quantity

q < a, ∆c(q|a, c) is such that

L(a, c) = L(a− q, c+∆c(q|a, c)).

Although there are several theoretically possible invariance rules, the most com-
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monly used one for blockchain-based AMMs is the constant product pricing rule where

L(a, c) = a · c, and we will use this rule in the remainder of the paper. When trading

quantity q, ∆c(q) satisfies ac = (a−q)(c+∆c(q)) for any q < a and −∆c(q) < c. Then

∆c(q|a, c) = q · c

a− q
and p(q) =

c

a− q
, (1)

so that ∆c(q) is the cost of the order and p(q) is the per unit price when trading q.

Figure 1 illustrates the process of finding a price, Figure 2 plots the price function p(q)

for an example with p(0) = 10 for various levels of liquidity. The latter figure shows

that additions and withdrawals of liquidity change the curvature of the price curve for

the same marginal price.

The important implication of the above setup is that in an AMM, prices move only

through trades whereas changes in liquidity are price neutral.

Traditional stock markets are almost always organized as limit order books in which

limit orders are ordered by price. The cost for a trade of size q is then the sum of the

costs for the different orders that the order trades against. For instance, a buy order for

1,000 shares may trade against 100 shares for $10.01, 500 for $ 10.02, and 400 for $10.05

as the order “walks the book,” and its cost is 100×$10.01+500×$10.02+400×$10.05.

Mathematically, the cost of an order can then be approximated by an integral over

a marginal pricing function γ(s) such that ∆c(q) =
∫ q

0
γ(s) ds. Consequently, the

constant product rule is equivalent to a limit order market with marginal price γ(s) =

ca/(a− s)2.
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II. The Liquidity Supply and Demand Decision

A. Costs of Liquidity Provision

Liquidity supply is inherently risky because the fundamental value of an asset can

change while the liquidity provider holds a position. The principle of any liquidity

provision is, therefore, that the liquidity supplier must earn more on trades that do

not move the market than what they lose on those that move the market.

Many microstructure models take a short-term perspective: liquidity providers in-

cur a positional loss against informed traders and recover these losses by a positional

gain from trading with uninformed traders. Such an approach implicitly requires that

a market maker can liquidate a position at an inefficient price.

In contrast, the premise of an AMM is that existing asset holders make longer-term

deposits and provide liquidity for a meaningful amount of time. We therefore assume

that deposits and withdrawals occur at efficient prices, so that liquidity providers

share trading-related risks. Lehar and Parlour (2021)’s approach is related to ours:

they assume that any uninformed trade is (approximately) reverted by arbitrageurs.

Therefore, liquidity providers have no positional gain from trading against uninformed

traders so that an AMM needs to include an explicit compensation scheme. We assume

here, as is common in practice, that compensation comes in the form of a fee F that

is levied on the dollar volume of each trade.

Very loosely, let the buyer-initiated volume be B and the seller initiated volume S

and, for the sake of the argument, assume B > S. Usually, when there are more buys

than sales, the price rises, say, from p0 to pt, and assume that prices are efficient, i.e.,
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that after B buys and S sells, “the price is right.” A liquidity provider earns the fee

on the total volume B + S, but incurs a positional loss because of the price-moving

volume, B − S.

The specific revenue can be computed as follows. The price impact loss is the

difference between the cash ∆c(B − S) that the liquidity provider receives for B − S,

and the assessed value of the asset after the trade at the marginal price, pt · (B − S).

Consequently, for liquidity provision to be viable, it must hold that

fee income + ∆c(B − S)− pt(B − S) ≥ 0. (2)

Note that the second part of the above, ∆c(B−S)−pt(B−S), is the net cost/benefit of

providing liquidity relative to a buy-and-hold strategy. Namely, if a liquidity provider

has a assets and c cash, these assets are worth pta+c for buy-and-hold. When supplying

liquidity, the provider has a− (B − S) assets and c+∆c(B − S) cash, which is worth

pt(a − (B − S)) + c + ∆c(B − S). The difference of this amount and the value of

buy-and-hold is what is specified in (2).

Crucially, in traditional markets, liquidity providers do not hold a position but

rather aim for a net-zero position. They need to make investments in technology to

accomplish this goal, and they need to borrow and lend assets and cash to cover short-

term unmatched positions. In contrast, AMM liquidity providers need to own the risky

asset before they can contribute it to a liquidity pool.1 Therefore, for AMM liquidity

pools, the suitable benchmark actually is a buy-and-hold strategy of the deposited

1Lehar and Parlour (2021) document that withdrawals of liquidity are rare, and that liquidity
providers appear to (buy-and) hold their assets in liquidity pools.
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assets. In what follows, we present a formal model based on Park (2023).

B. Model Primitives

There are two assets, risky A and safe C, the marginal price for A measured in C

at the beginning of trading is p0 = V0, where V0 is the fundamental value of one unit

of the asset. Liquidity providers make available their assets and cash for the liquidity

pool based on the specifics of the pricing function, and they commit to provide their

liquidity for a fixed time horizon. At the end of the time horizon, the fundamental

value of the asset is Vt, and we assume that arbitrageurs move the price so that pt = Vt.

The corresponding return R = Vt/V0 = pt/p0 with R ∈ [0,∞) follows a distribution

Φ : R+ → [0, 1] with continuous density φ. Arbitrageurs will add or remove the asset

in exchange for cash from the liquidity pool such that the marginal price at the end of

the period is pt. We use pt(R) to signify the marginal price that pertains for return R.

When trading with the liquidity pool, liquidity demanders pay a fee which is an

exogenous parameter of the AMM protocol. To simplify the exposition, we assume

that fee F accrues based on the dollar volume of transactions and is pro-ratedly paid

directly to liquidity providers.2 Therefore, when a liquidity demander buys q units of

the A-tokens, the liquidity suppliers receive a payment of F ·∆c(q) + ∆c(q) of cash.

Fees accrue for all trades. We assume that in addition to a price-moving trade,

during the liquidity provision horizon (say, a day), there is a volume V that is perfectly

2Many blockchain-based implementations of AMMs have a more complex process that affects the
value of the assets in the pool. That approach is best explained by example. To buy Q tokens, the
buyer first deposits P (Q) into the contract and then extracts a quantity Q̃. The fees are subtracted
from the amount P (Q) prior to their deposit so that the buyer formally receives Q̃ < Q. Moreover,
users always pay in the token that they deposit. Therefore, in practice, fees accrue separately per
token. See Lehar and Parlour (2021) for details.
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balanced.3 Since fees are collected based on the dollar volume, the order of trades

affects the fee income. For instance, when a buy-volume of V/2 assets is followed by

a sell-volume of V/2, then the average price and thus average fees are higher than if

the trades occurred in reverse order. Computing the expected income for arbitrary

histories in continuous time is beyond the scope of this paper. Therefore, we simplify

the analysis and assume that fees for V accrue at the marginal price p0. Let q
∗ denote

the price-moving trade; then total fees are

F∆c(q∗) + Fp0V. (3)

The Role of Fees. As Park (2023) shows, the fee is necessary because prices are

not regret-free and the constant product pricing function does not provide adequate

compensation to liquidity providers. Moreover, suppose one trader adds q assets and

another withdraws q. Since the assets in the pool after these two transactions are

the same as at the beginning, liquidity invariance ensures that the same holds for

cash. In other words, the cash flows off-set one another and liquidity providers earn

no income from this off-setting order flow. This contrasts limit order books: suppose

the midpoint of the order book at time t is mt, the bid and ask prices are respectively

mt−s, mt+s, and after a trade at t, the new midpoint is the last price. When there is

3This is a benign simplification because we assume that the arbitrageur trades such that the
marginal price at the end of the period is the “correct” price pt. Suppose noise volume from buying
and selling differs. Let q∗ denote the quantity that would move the marginal price from p0 to pt. Let
noise buy volume be b and noise sell volume s and without loss of generality b > s and pt > p0. Then
after observing b buys and s sells, the arbitrageur would trade q̃ = q∗ − (b − s). After this trade, the
marginal price is pt. For the liquidity provider’s fee income, it does not matter whether the trades
stems from a noise traders or arbitrageurs. We therefore assume that in expectation, b = s = V/2 so
that total expected volume is V .
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a buy followed by a sale, the cash flows to liquidity providers are mt+ s− (mt+1−s) =

mt + s− (mt + s− s) = s. In other words, in a limit order book, the liquidity provider

earns the spread.

C. The Decision Problem of Liquidity Suppliers

Liquidity providers deposit quantities a and c into the pool, with c = ap0; the slope

of the pricing function is determined by the constant product rule. We use d = c+ ap0

to describe the cash value of the initial deposit. Note that d = 2c = 2ap0.

Suppose that the fundamental changed from V0 to Vt. We assume that arbitrageurs

trade against the pool to buy the underpriced asset for as long as it’s profitable, i.e.,

until the marginal price pt = Vt.

Lemma 1: Let R = pt/p0. The quantity that moves the price from p0 to pt is q∗(R) =

a
(

1−
√
R−1

)

.

Proof. After the price moving trade of q∗, the pool contains at = a0−q∗ of the A token

and c+∆c(q∗) cash. For given pt = Vt, the price moving quantity q∗ thus satisfies

pt =
c+∆c(q∗)

a− q∗
. (4)

Under constant product pricing, when trading q, quantity ∆c(q) must satisfy ac = (a−

q)(c+∆c(q)). Therefore, the liquidity demander’s cost of buying q is ∆c(q) = qc/(a−q).

Using this functional form in (4) yields

pt =
c+ q∗c/(a− q∗)

a− q∗
.
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Solving for the price moving quantity q∗

q∗(R) = a−
√

ac

pt
= a

(

1−
√

p0
pt

)

= a
(

1−
√
R−1

)

, (5)

where the penultimate relation obtains because c = ap0, and the last relation uses

R = pt/p0 for the gross return, where also R = Vt/V0.

We can establish the following result:

Lemma 2: The expected return on deposit d from providing liquidity is

∫

∞

0

(√
R− 1

2
(1 +R) +

F

2
|
√
R− 1|

)

φ(R)dR+ F
V

2a
. (6)

Proof. Liquidity providers receive a net payoff ∆c(q∗(R))− ptq
∗(R). Collecting terms,

for balanced volume V , the expected return on deposit d from providing liquidity is

1

d

(
∫

∞

0

(∆c(q∗)− p∗pt(R) + F ·∆c(q∗)) φ(R)dR + Fp0V

)

. (7)

To compute the net positional payoff from trading q∗, ∆c(q∗)−ptq
∗, we express each

component separately as follows.4 First, we divide the first term, ∆c(q∗), by 2c(= d)

and simplify as follows:

∆c(q∗)

2c
=

1

2c
· q∗c

a− q∗
=

1

2

q∗

a− q∗
=

1

2
(
√
R− 1), (8)

where we substituted for q∗ from (5) in the last step. Second, we divide ptq
∗ by

4Barbon and Ranaldo (2022) use a similar formulation in their empirical work.
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2ap0(= d)

− ptq
∗

2ap0
= − R

2a
·
(

a
(

1−
√
R−1

))

=
1

2
(
√
R− R). (9)

Combining the terms (8) and (9) yields the expression for the relative loss that results

as a function of the gross return R

ILLRAS(R) =
√
R− 1

2
(1 +R) , (10)

where we use the acronym ILLRAS as an abbrevaition for the Incremental Loss from

Long-Run Adverse Selection. Finally, we substitute (5) to compute the fee return

F
∆c(q∗)

d
+ F

p0V

d
=

F

2
|
√
R− 1|+ F V

2a
, (11)

where we use absolute values to account for sales. Combining the losses due to changes

in the fundamental (10) and the fee return (11) and taking expectations, we can express

the expected return to liquidity provision (7) as follows

∫

∞

0

(√
R− 1

2
(1 +R) +

F

2
|
√
R − 1|

)

φ(R)dR + F
V

2a
.

The critical parameter for liquidity provision is the initial deposit. We can now

establish the following expression for the break-even liquidity deposit.

Proposition 1: The break-even deposit is a∗ = FV/2 · CCP(φ, F ), where CCP(φ, F ) =

−F × E[|
√
R− 1|/2]−E[ILLRAS].
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Proof. With competitive liquidity supply, the liquidity providers would break-even in

expectation, (7) = 0 Rearranging terms, the break-even deposit a∗ can be expressed as

follows

a∗ =
FV

2

(
∫

∞

0

(

−F

2
|
√
R− 1| −

√
R +

1

2
(1 +R)

)

φ(R)dR

)

−1

. (12)

The term in parentheses can be split into two components

∫

∞

0

(

−F

2
|
√
R− 1| −

√
R +

1

2
(1 +R)

)

φ(R)dR

= −
∫

∞

0

F

2
|
√
R − 1| φ(R)dR−

∫

∞

0

(
√
R− 1

2
(1 +R)) φ(R)dR

= −F × E[|
√
R− 1|/2]−E[ILLRAS] = CCP(φ, F ).

As the derivation shows, the value a∗ is unique.

It is important to emphasize that (6) is the return for liquidity provision, not the

return for holding the asset. When (6) = 0 holds, the liquidity provider breaks even

for liquidity provision but earns a return on holding the asset itself.

A key component that drives a∗ is the loss caused by changes in the fundamental

value when holding the asset in a liquidity pool, expression (10), or ILLRAS(R). Fig-

ure 3 plots this expression as a function of the gross return. The function is weakly

negative irrespective of whether the price rises or falls because the liquidity provider

always has less of the desirable item (cash or assets) for positive and negative returns.

The amount ILLRAS(R) is incremental to any returns from holding the asset (i.e.,

depositors retain exposure to the asset’s returns). To get a sense of the magnitude
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of this loss consider two scenarios: if the gross return is 0.9 (the asset lost 10% of its

value), the incremental loss relative to buy-and-hold is 13 basis points or 0.13%. This

implies that the liquidity provider makes a loss of 10.13% when the price drops by

10%. If the gross return is 1.1 (the asset gained 10% value), the depositor gains 12

basis points or 0.12% less compared to buy-and-hold. This implies that the liquidity

provider gains 9.88% when the price increases by 10%.

Equation (12) is the maximum amount of liquidity that can be provided so that

liquidity providers experience no loss. The goal of this paper is to examine liquidity

provision for listed equities. A very useful feature of our formulation is that it allows us

to describe liquidity by the fraction of shares outstanding for a listed asset. Namely, we

can describe liquidity by the fraction α of the shares outstanding S that are deposited

in the pool. Since the asset’s market capitalization is M := p0S, we can also write

d = 2α · M and a = αS, and then let α be the break-even fraction of the shares

outstanding for liquidity providers.

Corollary 1: The maximal liquidity deposit (i.e., the deposit for which liquidity providers

break even in expectation) measured in the fraction of shares outstanding is given by

α =
FV

2S

1

CCP(φ, F )
. (13)

Note that we implicitly require that α ∈ [0, 1]; i.e., if the right hand side expression

in (13) is larger than 1, then any liquidity provided is feasible for liquidity providers

and we set α = 1. Likewise, if the right hand side expression in (13) is negative, then no

amount of liquidity no matter how small would allow the liquidity providers to break

even and we set α = 0.
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D. Costs for Liquidity Demanders

Liquidity demanders face the constant product price function based on initial de-

posits c∗ + p0a
∗ = 2p0a

∗ = d. We now determine the trading costs per unit traded,

normalized by price p0. These costs coincide with the price impact for a size q order.

For the unit quantity q = 1, these costs can also be thought of as the implicit (half)

bid-ask spread. Formally, for a size q order, since p0 = c/a, the per unit relative cost is

p-imp(q) =

c
a−q

− c
a

c
a

=
q

a− q
=

q

αS − q
, (14)

where the last expression stems from us expressing the supplied liquidity a as a fraction

of the shares outstanding, a = αS. When trading on a AMM, the liquidity demander

has to pay this price impact plus the trading fee F .

We are specifically interested whether liquidity demanders prefer the AMM to the

traditional market where they pay the spread σ, i.e.,

q

αS − q
+ F ≤ σ. (15)

The left hand side of the above is decreasing in the liquidity variable α. For the liquidity

demander to be willing to use the AMM, the above inequality needs to be satisfied.

We can then define the minimal amount of liquidity that ensures this to be the case.

Lemma 3: The smallest amount of liquidity that would need to be deposited so that a
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liquidity demander who wants to trade q is willing to use the AMM is defined by

α =
q

S

1 + σ − F

σ − F
. (16)

Proof. The amount α is the value of α such that (15) is solved with equality.

As with α, we require implicitly that α ∈ [0, 1]. If the right hand side expression

of (16) is negative, then any amount of AMM liquidity would dominate the traditional

market, and we set α = 0. Conversely, if the right hand side expression of (16)

exceeds 1, then no amount of AMM liquidity would allow the AMM to be preferred

to the traditional market and we set α = 1. We note that there is no constraint that

ensures that α < α; whether this holds is an empirical question.

We further need to highlight that we are computing α for a specific q. To accommo-

date a large q, deposited liquidity has to be large to compete with the spread. However,

for a large q, the spread may no longer be the right point of comparison either because

there is not enough depth in the limit order market to accommodate a large trade.

In our empirical assessment we choose a “sufficiently large” quantity in our com-

putations; in untabulated work, we also ran the analysis using average institutional

orders (these are in excess of 20K shares) and average time-weighted market depth.

The insights are usually similar. Ultimately, our view is that the AMM should be at-

tractive to an average-sized, non-informed trade, and we believe the presented results

reflect this.
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E. Optimal Fees

Both thresholds for liquidity provision, α and α are functions of the AMM fee F and

increase in F : liquidity suppliers earn more for higher fees and can therefore “tolerate”

more sharing, and liquidity demanders require more liquidity to offset the fees.

The next question relates to the monetary benefit. When trading on traditional

markets, liquidity demanders pay bid-ask spreads, which add up to double-digit billion

dollar trading costs annually. To determine the relative benefit, we proceed as follows.

We assume that fees are set before liquidity deposits are made, that all information

is public, that beliefs and risk assessments are identical, and that liquidity providers

are risk-neutral. Assuming each liquidity provider is a price taker and risk neutral,

they keep contributing until the pool contains the break-even amount α of liquidity.

Accordingly, any surplus goes to liquidity takers.

For a trade of size q, the liquidity demander’s contemporaneous benefit per dollar

traded on an AMM instead of an open market is

π(q) = σ − q

αS − q
− F, (17)

There are two opposing forces for the liquidity demanders’s benefit from using the

AMM with regards to the fee F : Higher fees make liquidity providers more willing to

supply liquidity. This effect enters via α, which increases in the fee F . Higher fees

also mean that liquidity demanders have to pay more. Hasbrouck, Rivera, and Saleh

(2022) describe a similar mechanism in their paper. We can show the following.

Proposition 2: Assume that liquidity provision is competitive so that the deposited liq-
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uidity is α = α. Then for given q, there exists a fee F π that minimizes the AMM

trading costs for the liquidity demander.

Proof. Liquidity demanders submit liquidity until they break even with α = FV
2S

1
CCP(φ,F )

.

Their liquidity is a function of the fee F . The trading cost for liquidity demanders for

trading q is q/(αS − q) + F . Substituting α, we compute that local minimum for the

cost function

F π =
1

E[|
√
R− 1|/2] + V

(

−2q E[ILLRAS] +
√

−2qV E[ILLRAS]
)

. (18)

Note that using the AMM is not necessarily an equilibrium because it is possible

that for F = F π, α > α. It is an empirical question whether AMM trading is viable.

F. Assessing Welfare Improvement: Spread and Depth

In assessing the liquidity improvement, we compute two measures: first, the trans-

action cost savings, encapsulated in the value of (17) for the optimal fee F π. Second,

for given F π, we compute the maximum quantity qπ that a trader can trade such that

the cost in the AMM is the same as in the traditional market. This quantity solves

π(q) = 0, and it is

qπ =
Sαπ(σ − F π)

1 + σ − F π
. (19)

The reference point for this quantity is the depth in the traditional market because

trades larger than the depth would lead to a cost that exceeds the spread.
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III. Empirical Background

A. Assumptions for Computations

Our goal is to determine whether it is possible to implement AMMs profitably, using

observations from existing markets. We do not claim that our approach is optimal —

rather, it is a simple heuristic that we believe has intuitive appeal. If this simple

approach delivers a strong indication that AMMs can be used profitably then a more

complex optimization would likely deliver even stronger results.

An important feature of an AMM is that liquidity providers keep their deposits in

the liquidity pool for a period of time. The longer they keep them, the more fees they

earn, but also the larger is the risk of adverse price movements. For risk sharing, it

is further important that liquidity providers don’t differentially withdraw their funds

right at the first sign of an adverse price movement. More broadly, we envision that

these liquidity providers are not like professional intermediaries that hold positions

purely for trade facilitation but, rather, these are long-term investors who simply seek

to put their capital to use.

With this in mind, we focus our analysis on a day-by-day process, that is, we com-

pute within-day returns and assume that liquidity deposits are locked for the duration

of the trading day. The specific process that we assume is as follows:

1. The market opens with an auction. Its market clearing price determines the ratio

of cash to assets for AMM deposits.5

2. The AMM operator computes the welfare optimizing fee F π.

5This process ensures that users face no overnight risk from a liquidity pool deposit.
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3. Liquidity providers submit liquidity up to α, provided that α > α, using the

previous day’s volume and the estimated expected return.

4. Trading commences and liquidity deposits are locked up.

5. At the end of each day, all funds are withdrawn from the pool and added back

to the liquidity providers’ accounts.

B. Estimating Returns

A critical component in the liquidity deposit decision is the asset’s return distribu-

tion because we need to determine CCP(φ, F ). We follow two approaches. In the first,

ad hoc formulation, liquidity providers look back one day and base their decision on the

previous day’s return. In the second, we assume liquidity providers compute intra-day

returns over a long stretches of time and base their decision on this distribution.

Concretely, for the ad hoc approach we ignore the first term, −F ×E[|
√
R− 1|/2],

i.e., we do not explicitly account for the fees that liquidity providers earn on the price

moving trade q∗, and we use the previous day’s realized open-to-close return as the

“best guess” for the coming day’s return.

In our second approach, we stay close to the model and estimate E[|
√
R−1|/2] and

E[ILLRAS] parametrically based on realized returns. Namely, we estimate φ(R) using

the Gamma distribution with its scale and slope parameters, where Gamma distributed

returns follow density f(R) = 1
bΓ(c)

(

R
b

)c−1 · e−R

b with scale and shaped parameters b, c,

mean E[R] = bc, and variance V ar(R) = b2c.6 We use the observed open-to-close

returns R for our sample from January 2014 to end-March 2021, we ignore days with

6In untabulated work, we also estimate the distribution non-parametrically; the results are similar.
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returns smaller than .5 (the price halved) and larger than 2 (the price doubled), and

we require there to be at least 100 return observations. Figure 4 provides two visible

examples for realized and estimated returns: one for Tesla Inc, the other for Microsoft.

Using the return distribution, we can compute the two distribution related compo-

nents of CCP(φ, F ), E[|
√
R− 1|/2] and E[ILLRAS]. We then apply these values in the

computation for the optimal fees for the remainder of the sample, from April 2021 to

sample-end March 2022.

We believe that there is merit for both approaches: the first would be easy to

implement in practice, the second is closer to the model. In presenting both, in par-

ticular the ad hoc, first one, we therefore show that an AMM can be implemented

straightforwardly even when sacrificing 1:1 matching of the model setup.

C. Variables of Interest

We are interested in the optimal fee F π, the number of days for which the AMM

leads to a welfare gain π > 0, the size of the average welfare gain π and the aggregate

dollar amount saved, and the equivalent quantity qπ. Notably, on the “day of”, the

realization of π can be positive or negative (e.g., because spreads may be lower than

on the previous day). Finally, we also compute the payoffs to liquidity providers who

in our approach should break-even on average.

D. Data Sources and Sample

We focus on the universe of U.S.-listed common shares that are in the TAQ database,

but we are excluding any symbol with a suffix (this therefore excludes preferred shares

and dual-class shares). Our sample period is January 1, 2014 to November 30, 2022.
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This time horizon covers the S.E.C.’s “Tick Pilot” which ran from October 2016 to Oc-

tober 2018; the pilot changed the minimum price increment for a number of securities

from 1 to 5 cents, thereby artificially increasing the tick size for a subset of securities.

To ensure that our work is not affected by sample selection concerns, we exclude the

time horizon of the tick pilot from our data.

We obtain information on shares outstanding at the daily level from CRSP. Data

related to intra-day trading is from the WRDS computed statistics, which are based on

TAQ data. We specifically use the intra-day trading volume, the number of transac-

tions, the volume weighted average price, time-weighted bid-ask spreads, the opening

price, the first price after the open and the last price before the close, and we compute

from the data provided the average trade size across all orders.

E. Key Variables

Trading Volume and Intermediation. A key variable in our analysis is the amount

of daily volume because it determines the fee income. In traditional markets, a por-

tion of the volume is intermediated, because some traders interact with a professional

liquidity provider who then offloads the position at a later stage. The extent of in-

termediation differs by security — usually larger firms have more intermediation than

smaller ones. In an AMM, there is no intermediation. Ceteris paribus, volume in an

AMM would therefore be weakly smaller than in an intermediated market. We make

the (strong) assumption that every share trading is intermediated once and that no

intermediation takes place in the AMM. Therefore, we approximate the balanced vol-

ume as half of the previous day’s volume. We believe that this approach is reasonably

cautious: Lehar and Parlour (2021) assume that uninformed trades would be (approxi-
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mately) reversed by an arbitrageur and therefore, if we followed this view, uninformed,

non-intermediated volume would be doubled, or, put differently, intermediated volume

would be replaced with arbitrageurs’ volume.

WRDS provides several volume metrics to researchers that sometimes vary slightly:

we use the daily maximum of these.

Order Size. Since there are sometimes very large orders that get processed in a

specialized dark pool or OTC market, and an AMM is unlikely to serve all order sizes

better. At the same time, market orders in traditional markets may “walk the book”

and trade at worse prices than the top-of-the book bid and ask prices; our data does

not separately indicate the cost for such orders. A trader who splits a large order into

smaller pieces may be detected which increases the price of the total order, too. In

an AMM, order splitting is not profitable per se, but by splitting orders buying and

selling traders may take turns which would lower both their costs.

Our approach is to base our analysis on averages and to allow for sizes larger than

the average. Since the liquidity provision decision must be taken before trades arrive,

we use long-run, 100-day averages and standard deviations thereof for trade sizes, where

the average trade size is the ratio of volume to trades. As our decision order size, we

use the average trade size plus two standard deviations of the 100-day average.

Trading Cost. Trades with an AMM are marketable orders. We therefore compare

the AMM price impact in (14) plus fees to a measure of trading costs for a marketable

order. We compare this cost to the half of the time-weighted quoted bid-ask spread;

the effective spread may be biased when traders time their trades to take advantage of
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liquidity patterns.

Horizons. AMMs have the premise of “stable” liquidity in the sense that depositors

keep their assets in place for a long stretch of time to collect fees relative to a buy-and-

hold strategy. Longer horizons usually mean higher variance in returns, but there are

also more fees that accumulate. Most importantly, there is overnight risk.7 The process

described above eliminates this risk because it allows liquidity providers to reset the

deposited quantities each day after the overnight information has been incorporated

into the opening price. In practice, the process of liquidity provision could even be

automated so that the liquidity provider would have to do any risk assessments and

computations themselves. In untabulated results, we also performed the analysis for a

four week (20 trading days) holding period. The findings are similar.

F. Key Metrics for Comparison

We are interested in three questions. First, we want to know whether an AMM is

viable, that is, whether the minimum viable liquidity, α is below the maximum viable

liquidity α, α < α. In addition to the inequality, there are other “corner solutions” to

consider: When α = 0, then liquidity demanders always prefer AMMs, when α = 1,

no amount of AMM liquidity is sufficient for liquidity demanders to use the market.

When α = 0, then liquidity suppliers would never be able to use an AMM profitably,

when α = 1, then an AMM deposit always dominates a buy-and-hold strategy.

Our second variable of interest is the optimal fee, F π.

7For instance, as the Financial Times (July 5, 2023) recently observed, cumulative overnight
returns for the S&P500 ETF SPY since its inception in 1993 lead to a 10 fold price increase whereas
intra-day returns are essentially “flat.”
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Third, the thresholds and the fee are computed based on past behavior. We compute

the trading cost based on observed volume and we compute the trading costs advantage

(or disadvantage) of an AMM relative to the regular market using observed volume and

spreads. We thus determine the difference of the quoted spreads and the AMM price

impact plus fees.

Finally, we also need to compute whether empirically liquidity providers break even.

Topics that we do not address. An implicit assumption in our analysis is that

liquidity providers assume that, when introduced, the AMM provides strictly cheaper

liquidity compared to the traditional market and would therefore attract all volume.

There are three issues. First, some of the observed volume is intermediated. With an

AMM, intermediation is moot because AMMs rely on existing shareholders providing

liquidity, and intermediaries are not long-term investors. Therefore, if markets would

switch to AMMs entirely, intermediated volume would disappear.

The second issue is that AMMs would come into being only if they are cheaper.

Usually, demand curves are downward sloping in trading costs and, therefore, lower

costs should attract additional volume. As a check to see whether this is true, we

compute the elasticity of volume relative to spreads, but we will not make assumptions

regarding incremental volume that AMMs may “create.”

The third issue is that some traders use limit orders to fill their positions, which

allows, say, a buyer to buy at the bid rather than the ask. Arguably, for these traders,

AMMs are more expensive, a caveat that we cannot avoid but that we share with most

empirical analyses in the microstructure literature.
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IV. Empirical Results

A. Optimal Fee Visuals

We begin by exploring the data visually. All figures plot the variable of interest

against the firm’s log-market cap. Larger firms commonly have more volume and lower

bid-ask spreads, and this sorting therefore provides a useful reference point. Each point

in a graph represents an annual average of the variable of interest, and we use various

colors to differentiate the years. One salient feature of several plots is that there are

some mid-size firms for which the AMM does not do well. This is a group of roughly

200 firms that trade very infrequently, i.e., there is not enough volume to generate a

sufficient fee income to offset adverse selection losses.

All figures that we discuss in what follows have two panels: Panels A on the left

show datapoints for our ad hoc approach, where we approximate today’s expected re-

turn by yesterday’s; this data shows annual averages. Panels B on the right panel plot

datapoints for the approach where we first estimate the return distribution parametri-

cally. A datapoint here signifies the average for the last year of our data, from April 1,

2021 to March 31, March 2022.

Figure 5 displays the optimal fee. These fees are larger for smaller firms, chiefly

because they have less volume and liquidity providers need to earn more per trade to

break even.

Figure 6 shows the payoff to liquidity providers, where we use red values for losses

in Panel B. For our modelling approach to be valid, the payoffs to liquidity providers

should be close to zero — which they are. For instance, for estimated returns in
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Panel B, average liquidity provider returns are −0.2bps.

Figure 7 plots the deposited amounts α, which would allow liquidity providers to

break even. These are generally decreasing in size, albeit weakly.

Figure 8 plots the number of days for which an AMM is indeed feasible, α < α,

i.e., days for which liquidity providers are willing to provide amounts of liquidity that

would entice liquidity demanders to use the AMM.

Figure 9 is the key finding of our paper: it displays the average benefit to liquidity

providers π of using an AMM. The figure shows that almost always liquidity demanders

would benefit from the presence of an AMM, with higher relative gains for small firms.

Notably, our analysis makes no assumptions about behavioral changes that would result

from lower transactions costs. It is conceivable that stocks with strong costs declines

would increase their trading activity, which would further magnify the benefits.

Figure 10 displays the average daily savings from using an AMM. Here, gains are

larger for large firms because dollar savings compound over many transactions.

Finally, Figure 11 displays the implied excess depth of an AMM, that is, the amount

that a trader can trade on an AMM to have the same cost as on a traditional markets

minus the depth of the traditional market. As can be seen, the implied depth of AMMs

almost always exceed that of the traditional market. This finding is particularly note-

worthy. AMM pricing is convex and larger quantities cost more whereas on traditional

markets, traders can trade the full depth at a constant spread. Since our AMM calibra-

tion is based on the average order size, one may worry that costs quickly escalate when

traders submit larger orders; notably, posted depth often exceeds that size. However,

we show that liquidity demanders can conceivably trade much more than the average
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trade size on an AMM before they have the same cost as the traditional market. In

other words, the AMM also has better depth than the traditional market.

B. Tabulated Results

Our next step is to examine the summary statistics for our sample. We compute

summary statistics for three splits of the data. In the first we average and aggregate

across the entire sample. In the second, we average and aggregate by year, where we

note that the year 2016 has 9 months of data (Jan-Sept, until the beginning of the tick

pilot), 2018 has 3 months (Oct-Dec, after the conclusion of the tick pilot), and 2022

has 3 months (Jan-March, due to data availability). In the third, we average and sum

across market capitalization deciles, where we determine these deciles based on annual

averages.

Table I presents general summary statistics for trading variables. We use simple

averages and do not filter stocks based on price. Aggregated across all stock, bid-

ask half-spreads are around 40-50 bps. Across market-cap deciles, the average quoted

spread falls from over 100 to single digits. In turn, this indicates that for large stocks,

only very liquid AMMs with low fees will be viable. We note that trading volume

in 2020 and 2021 was significantly higher than in the preceding years, probably as a

by-product of the COVID pandemic. Moreover, trading volume concentrates in the

20% largest firms.

The most important results are in Table II which computes behavior and outcome

variables when the used fee is F π (applied and computed per stock and day). The first

column lists the optimal fee itself. As indicated by the plots, smaller firms have larger

optimal fees compared to large firms. This observation is also visible in the numbers:
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the average optimal fee for the smallest decile is about 31bps whereas for the large

firms, it’s less than 1bps. The second column shows for what fraction of days AMM

are better than the traditional market whereas the third column shows the number of

days for which AMMs are used (i.e., α > α). Notably, AMMs are not better whenever

they are used, e.g., because spreads on the traditional market may be lower. Overall,

the data show that AMMs are used and better than the traditional market between,

roughly, 80-90% of days. The third column displays the average savings per stock and

day and the third column lists the savings across the entire sample. The data show

that although the proportional savings in terms of relief from the bid-ask spread are

largest for small stocks, the dollar-amounts are larger for large stocks, simply because

they have higher so much more volume.

The last column shows that across the board, AMMs would save liquidity demanders

over 30% of transactions costs.

V. Capital Requirements

Our empirical results indicate that liquidity providers would need to deposit on

average between 3% and 8% of a firm’s shares outstanding to an AMM. For most

(though not all) investors, shares are unused capital, and therefore such a deposit

under the right conditions is feasible. However, liquidity provision requires an offsetting

amount of cash, a potentially very large sum that is not free because unlike a securities

deposit, cash earns interest or needs to be borrowed. During much of our sample

period, interest rates were close to zero but for a 6% annual rate, the daily required

payments to liquidity providers would increase by around 2bps. These costs need to
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be recovered via AMM fees, and that may make AMMs not viable for high marketcap

stocks where optimal fees are on average below 2bps.8

However, in this section we argue that in practice, the actual cash requirement will

be much lower than the equivalent of the market cap deposit.

The constant product function that we present implicitly allows liquidity demanders

to extract all c cash and a assets. In these extreme cases, the price would go to zero and

infinity respectively, an unlikely scenario. Moreover, many second generation AMMs

such as UniSwap V3 have a refined pricing function where liquidity providers choose a

price band to supply liquidity, and not the full range. In practice AMMs would likely

have such a functionality, if only because of single-stock circuit breakers. Therefore,

the full amount of cash and shares would never be used in practice.

To better quantify the amount of actual cash needed, we proceed as follows. Assume

that liquidity providers agree to supply liquidity as long as the returns is in a band

R ∈ (R, R̄). A price rise coincides with traders removing assets and adding cash, a

price decrease coincides with a removal of cash. Since we are concerned with cash

liquidity, only price decreases are relevant. For the price to move by R, by equation (5)

there is quantity q(R) that has been traded with the pool such that

q(R) = a(1−
√
R−1),

where a = αS, the initial deposit of assets, measured as a fraction of shares outstanding.

Since R < 1, note that this quantity is negative and thus signifies a sale. We seek

8During much of the sample, borrowing rates were close to zero, and presumably, when capital
costs rise, so would the bid-ask spreads in the competing traditional market.
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to compute how much needs to be available to have liquidity available for prices in

(p0 · R, p0 · R̄), we divide both sides by a = αS. This is the fraction of the shares

outstanding that would need to be made available to accommodate a price drop of R

maxshares(R) ≡ 1−
√

R−1. (20)

To obtain the amount of cash to accommodate a drop of R, we substitute back into

the price equation and simply

∆c(R) = c · a(1−
√
R−1)

a− a(1−
√
R−1)

,

which simplifies to the fraction of the cash deposit for R = R

maxcash(R) ≡
∣

∣

∣

∣

∣

1−
√

R−1

√

R−1

∣

∣

∣

∣

∣

, (21)

where we use the absolute value for greater clarity (for R < 1, the value will otherwise

be negative).

What would be a reasonable value for R? One benchmark emerges from circuit

breakers: U.S. markets have single-stock circuit breakers that are triggered, loosely, if

a stock price drops by 10% during the continuous session. After a circuit breaker has

been triggered, trading would be halted and would restart with a price-determining

auction. Presumably, this would mean that AMMs would be halted, too. For R = 0.9,

maxcash(0.9) ≈ 5.1%, i.e., about 5.1% of the required AMM deposit in stocks is

necessary in cash. Thus, if α = 5%, one would need 25 basis points of the market cap
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in cash for the AMM to work.

Another option is to derive this number empirically based on past return profiles.

One example is to compute averages and standard deviations or rolling intra-day re-

turns. A reasonable approximation is to set R as the average minus two or three

standard deviations to ensure prices are supported for 95% or 99% of the price band

respectively. Another approach would be to consider only the distribution of price

decreases or lower partial moments.

Figure 13 displays the year-stock averages of maxcash(R) based on a 20-day (4-

week) rolling average of the intra-day return R minus three standard deviations. The

average is 2.4%, the maximum 46%. Most of the larger values stem from the year 2020,

when markets swung wildly at the start of the COVID pandemic. The implication is

that the funding costs for an AMM deposit on a day-to-day basis will be on the order

of a fraction of a basis point because the required (and accessible) cash deposits are

only a fraction of the deposited capital.

In summary, although cash deposits are costly, the required amounts are but a

fraction of the “on-paper” liquidity.

VI. Discussion and Conclusion

The principle behind the superiority of AMMs is somewhat similar to Budish, Cram-

ton, and Shim (2015)’s proposal for frequent batch auctions. Namely, following Fou-

cault (1999), Budish, Cramton, and Shim (2015) show that limit order books expose

individuals to adverse selection risk, which inevitably creates costs. They propose pe-

riodic auctions as a solution because auctions pool multiple liquidity providers and
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traders, which eliminates the “sniping” risk and which may lead to better risk sharing.

AMMs have this feature, too. Yet frequent auctions have conceptual and organiza-

tional shortcomings. A short list is that they require ongoing liquidity provision so as

to avoid price dislocations, it is unclear who would supply liquidity, they need to be

integrated with the remainder of financial markets which operate in continuous time,

their implementation and usage will be technologically challenging, it’s not clear how

competing auction systems would interact (do we need to create a monopoly?), and so

on. AMMs do not have these problems: liquidity provision is passive and in expecta-

tion costless for the liquidity providers; trading is continuous; prices are predictable;

different AMMs can run parallel because their liquidity aggregates; and they are easy

to use.

Despite the technological challenges, the Securities and Exchange Commission (SEC)

has proposed to mandate an auction system for retail orders in its December 2022

roadmap. We believe it is important to have a conversation about this proposal and

consider alternative market structures. Glosten (1994) predicted that the electronic

limit order book would become the standard in open, public markets. This prediction

has proven to be true, as OTC and dealer markets for equities have largely disappeared

in favor of the limit order book. AMMs have only recently emerged as a concept, albeit

for crypto-assets only. Our work provides an empirical case for the benefits of AMMs

and argues that they are often better. Notably, they work for both passive liquidity

providers and active liquidity demanders.

Our approach to introducing AMMs may be overly optimistic; for instance, we

assume that they would process all non-intermediated volume. Additionally, our study
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uses a rudimentary AMM, and there are ways in which they could be improved. For

instance, users could set ranges for which they provide liquidity, which would reduce

liquidity providers’ exposure (UniSwap V3 has such a provision) and lowers capital

requirements.

Another criticism of our analysis is that we do not consider the role of people who

want to trade with limit orders. Namely, in practice not all trades have intermediaries

on the passive side whereas our model implicitly requires that all traders use market

orders only. However, a UniSwap V3-type setting can somewhat accommodate the

equivalent of trading with limit order trading. In the V3 setting, users can specify a

price range for which they supply liquidity. Someone who wants to sell can therefore

specify a price range with the lower price at or above the opening price. If the price

increases during the day, they would sell the asset. Of course, there are limit to this

approach because of pro-rating. In fairness, few models and analyses consider the

welfare of limit order traders.

There are also many regulatory obstacles and challenges that would need to be

addressed.

First, AMMs require not only assets but also cash, and therefore there would have

to be a significant short-term cash-lending market, possibly with off-setting collateral

arrangements. Setting up such a market is not a simple task. There are technolog-

ical ways to improve capital usage, e.g., the Balancer protocol allows liquidity pools

that consist of multiple assets and only one of them is cash. This allows traders to

change positions in assets without having to convert them to cash, for example, trading

Facebook stocks against Google/Alphabet stocks directly.
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Second, current tax rules may complicate the operation and use of AMMs for liquid-

ity providers. If broker-dealers were to operate an AMM, depending on the jurisdiction,

each trade may create a taxable event for every AMM liquidity provider. Tracking these

events will be challenging and it will affect the profitability of liquidity provision. Fur-

thermore, the number of events may lead tax authorities to classify AMM liquidity

provision as a professional activity, in which case, any capital gains may be classified

as ordinary income.

Third, there are multiple models of AMMs and AMM pricing, and they may conflict

with securities regulation. For example, when assets are in a pool, it raises questions

about who the beneficiary owner/holder of records is and how dividends, splits, reverse

splits, and votes would be handled. Additionally, depositing assets into an AMM

may conflict with investment managers’ directives and obligations. This means that

regulations may need to adapt for the investors that they protect to enjoy the benefits.

Deposits and AMMs themselves could also be viewed as a securities offering, which

would significantly complicate their deployment. Would each pool require a separate

prospectus? Would this allow cross-pool trading? Regulation here could well be a

poster-case for the creation of barriers that generate economic harm.

Fourth, it is important to consider who would run AMM pools. In the blockchain

world, AMMs can be established ”on-chain” because users can self-custody and control

their assets. However, exchange operators in their current form cannot take on this role

because they do not have custody of the assets. They also stand to lose most of their

data income. Broker-dealers also face a conflict, as an AMM pool would negatively

impact their securities lending business and would incur additional costs for record-
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keeping. Unless volume increases substantially, it is unclear whether broker-dealers

would benefit from the introduction of this new tool. As we show, AMM liquidity is

additive, so it is unnecessary to establish a single entity to run an AMM pool. Having

multiple pools is fine, provided they are accessible and linkable. However, if broker-

dealers run AMMs, there would need to be a system to access the different pools, and

that requires the linking of disjoint systems. On the other hand, public blockchains do

not have this problem because all AMMs run on the same infrastructure. AMMs that

co-exist with limit order books would face the problem that their functionality may be

incompatible with Reg NMS. Again, regulation could be a barrier to significant cost

savings.

However, the world is changing: public blockchains are enabling the trading of

tokenized assets, traditional financial institutions are developing tokenizations and may

soon run trading platforms like AMMs, and regulatory changes such as the European

Union’s “Markets in Crypto Assets” (MiCA) or the UK’s crypto regulation roadmap

pave the way for asset tokenizations with regulatory certainty. Another fair question

to ask is: if AMMs work so well, why don’t they process 100% of trading volume

in crypto-assets? Our answer is that blockchain-based AMMs have a steep learning

curve and are still not user friendly: Although the interfaces for AMMs like UniSwap

are straightforward to use, there are significant complications. For instance, traders

need to learn and be comfortable with using so called self-custody wallets. They also

(almost) always need two tokens to trade: one is the native cryptocurrency that they

need to pay blockchain validators and the other is the asset of choice that they want to

trade. Note though that an AMMs as we treat them here do not require a blockchain
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— an exchange or broker-dealer could organize trading in an AMM, and they could

provide a seamless user experience.

Finally, to be transparent: our analysis is optimistic as we assume that a very

significant fraction of all trading volume would move to AMMs if they were available.

Arguably, however, our analysis is also conservative because it does not take into

account potential increases in trading volume that may occur as a result of decreased

trading costs.
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A The Origin of AMMs

Although public blockchains such as Ethereum are general purpose value manage-

ment system, a blockchain network does not make a market. Instead, until mid-2020,

users could trade blockchain-based items or tokens only on centralized, ”off-chain”

exchanges. This changed by with the release of Automated Market Maker (AMM)

systems such as UniSwap or SushiSwap, which have seen tremendous user uptake, pro-
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cessing billions of dollars worth of transactions every day, often more than the largest

centralized exchanges such as Binance and Coinbase.

The nexus of the development of AMMs were discussions around the pricing rule to

determine exchanges for tokens using blockchain-based systems. The first mention of

automated decentralized market making is in a 2016 Reddit post by Vitalik Buterin.

Martin Koppelmann proposed the first constant product pricing scheme.

Why was there no blockchain-based trading earlier? In principle, it is possible to

organize crypto-asset trading directly on a blockchain by registering limit orders as

”smart contracts.” However, this is not practical because each new limit order costs

a validation fee and because unmatched orders would waste resources as they need to

be processed by all 10,000+ network nodes. There are numerous refinements of the

constant product rule, and there are pools that administer not just pairs but arbitrary

numbers of assets (e.g. Balancer). Most of the refinements lead to even lower trading

costs while offering liquidity providers protection against large price movements. The

goal of this paper is to establish a simple baseline against which one can assess the

merits of AMMs for traditional markets in terms of improving welfare. Most likely,

innovation would further increase welfare if the concept itself is implemented.
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Figure 1
Constant Product Prices in Automated Market Makers

The figure illustrates how the exchange rate of stocks to cash is determine in an auto-
mated market maker. The initial deposit in the contract is for a assets and c cash, so
that the pool’s liquidity is L(a, c). A trader wants to buy (i.e., remove) quantity q of
the assets. The price ∆c(q|a, c) is such that after the purchase, the amount of cash in
contract is such that the point (a− q, c+∆c(q|a, c)) is on the L(·, ·) curve.
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Figure 2
The Per-Unit Price Function for Constant Product AMMs

The figure shows the per-unit price function for constant product market making for
an asset that has a marginal price of $10 for various levels of deposited liquidity. The
marginal price is p0 = c/a; the per unit price is p(q) = 10a/(a − q). We plot this
function for a = 1, . . . , 5.
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Figure 3
The Incremental Loss from Long-Run Adverse Selection (ILLRAS)

for Constant Product Pricing
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Realized and Estimated Return Examples
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Figure 5
Benefit-Maximizing AMM Fees
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Figure 6
Costs/Benefits to Liquidity Providers
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Figure 7
Fraction of MarketCap Deposited
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Figure 8
Percent Days that AMM is better
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Figure 9
Cost Advantage AMM vs. Traditional (measured as difference in relative transaction costs)
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Figure 10
Dollar Amount of Transaction Costs that AMM saves per day and stock
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Equivalent Depth for AMM Trading
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Relationships among the Explanatory Variables
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Table I
Summary Statistics Traditional Trading Variables

This table presents general summary statistics for trading variables. We use simple averages and do not filter
stocks based on price. We present averaged and aggregated across the entire sample, split by years (where
2016 has 9 months of data (Jan-Sept, until the beginning of the tick pilot), 2018 has 3 months (Oct-Dec, after
the conclusion of the tick pilot), and 2022 has 3 months (Jan-March, restrictions by data availability)), and
split by market capitalization deciles, where we determine these deciles based on annual averages. The first
column contains the average, time-weighted bid ask spread, the second the fraction of retail trading as provide
by WRDS and computed according to Boehmer, Jones, Zhang, and Zhang (2021), the third column is the
fraction of institutional trading based on trade sizes above 20K, the fourth column is total dollar volume in
trillions of USD, and the last column is a rough approximation of trading costs computed as the produce of
the bid-ask spread and dollar volume.

quoted spread
in bps

%retail %institutional
dollar volume
(in trillions)

transaction costs
(in billions)

full sample 49.3 9.8 13.8 391.0 181.0

2014 44.5 9.5 13.6 43.2 16.4
2015 51.4 9.6 12.8 45.5 17.3
2016 (9m) 54.4 10.7 12.1 32.9 11.9
2018 (3m) 64.6 10.2 12.7 15.2 8.5
2019 52.0 10.3 13.2 53.0 21.1
2020 50.8 10.2 14.3 79.3 43.7
2021 35.8 9.0 17.2 94.8 48.8
2022 (3m) 41.1 9.2 14.7 27.1 13.5

lowest mcap quintile 153.6 24.9 3.4 0.8 6.6
2 108.6 18.6 7.2 0.9 4.6
3 74.6 12.8 10.3 0.9 4.0
4 50.4 9.1 12.6 1.8 5.3
5 36.1 7.4 12.8 3.5 7.4
6 24.1 5.9 13.1 6.4 10.8
7 16.2 5.1 13.8 13.3 15.2
8 11.2 4.4 15.8 24.4 20.9
9 7.3 4.4 20.2 55.6 33.1
highest mcap quintile 4.0 5.1 30.3 283.5 73.2
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Table II
Summary Statistics of Based on Optimal Fees — Ad Hoc Approach

This table presents summary statistics for benefits and outcomes when the fee of the AMM is F π for each
stock. These fees (as averages) are in the first column. The rows are structured as in Table I.

average
optimal
fee (in bps)

Days AMMs
are better

Days AMM
are used

average daily
savings per
stock & day

aggregate
savings (in B$)
all stocks

aggregate
transactions
costs (in B$)
all stocks

% saved

all 10.6 82% 86% $8,303 $54.3 $167.4 32%
2014 9.7 79% 83% $4,472 $4.8 $14.6 33%
2015 11.4 79% 83% $4,712 $5.2 $15.6 33%
2016 12.6 79% 84% $4,883 $3.9 $11.3 34%
2018 12.4 81% 86% $8,802 $2.3 $7.3 31%
2019 11.0 83% 87% $6,081 $6.5 $19.1 34%
2020 10.9 85% 89% $11,705 $12.5 $39.8 31%
2021 8.1 85% 89% $11,425 $15.0 $46.4 32%
2022 9.4 83% 87% $12,498 $4.2 $13.3 32%

Quintile
1 30.8 78% 84% $1,906 $1.2 $3.9 30%
2 24.1 72% 80% $1,513 $1.0 $3.2 33%
3 17.6 72% 80% $1,420 $0.9 $3.0 32%
4 12.7 74% 81% $1,945 $1.3 $4.2 31%
5 8.0 82% 87% $3,015 $2.0 $6.3 32%
6 4.9 87% 90% $4,773 $3.1 $9.4 33%
7 3.3 88% 90% $7,066 $4.6 $14.0 33%
8 2.2 88% 91% $9,983 $6.5 $19.5 33%
9 1.5 88% 91% $15,787 $10.2 $31.5 32%
10 0.8 89% 91% $35,654 $23.4 $72.4 32%
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Table III
Summary Statistics of Based on Optimal Fees — Estimated Distributions

This table presents summary statistics for benefits and outcomes when the fee of the AMM is F π for each
stock. These fees (as averages) are in the first column. The rows are structured as in Table I.

optimal
fee
(in bps)

Days
AMMs
better

percent
mcap
deposited

daily
savings
(bps)

daily
savings
(in USD)

aggregate
savings
(in M$)

liquidity
supplier
costs (bps)

equivalent
AMM
depth

LOB
depth

total 11 93.8 2.1 16.4 9535 8814 -0.2 1132 1259

Quintile
1 32.8 91.9 4.8 40.6 2023 182 -0.1 2399 1364
2 27 91.1 3 34.3 1697 155 -0.2 1879 1327
3 17.9 90.1 2.9 26 1942 174 -0.2 1475 2670
4 11.6 94.1 2 21 2963 265 -0.2 1234 1376
5 7 95.1 1.6 14.5 4121 380 -0.2 961 1199
6 5.1 94.3 1.5 9.7 5749 534 -0.1 775 1125
7 3.6 95 1.4 7.2 8920 829 -0.2 705 1109
8 2.7 95.3 1.3 5.2 11830 1091 -0.2 639 949
9 1.7 95.4 1.2 3.8 19983 1854 -0.2 627 637
10 0.9 95.8 0.7 1.9 36176 3351 -0.1 626 829
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Table IV
Summary Statistics of for Cash Requirements

This table presents the estimated amount of shares and cash that liquidity providers would need to produce
to be liquidity providers. The number is computed assuming that the AMM shares the optimal fee F π. The
rows are structured as in Table I.

fraction of mcap
in liquidity pool

% cash
required

average per day
cash per stock
(in millions of USD)

full sample 6% 2% $172.1
2014 6% 3% $155.3
2015 6% 2% $105.0
2016 5% 2% $108.9
2018 5% 3% $194.6
2019 6% 2% $146.6
2020 5% 3% $220.4
2021 7% 2% $213.8
2022 6% 2% $220.1

Quintile
1 8% 4% $1.0
2 7% 3% $2.2
3 7% 3% $4.2
4 8% 3% $6.9
5 6% 3% $12.3
6 5% 3% $21.4
7 5% 2% $35.4
8 5% 2% $58.5
9 4% 2% $118.5
10 3% 1% $752.8
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